Stammtisch Energie und E-Mobilität

Li-Ionen Zellen Vom Rohstoff zum Recycling

1

Lithium als Batteriekomponente

Auf Li-Ionen basierte elektrochemische Zellen

Eine **Lithiumbatterie** ist eine **Primärzelle**, bei der Lithium als aktives Material in der negativen Elektrode verwendet wird. Sie ist nicht wieder aufladbar.

Lithium-Ionen-Akkumulator ist der Oberbegriff für Akkumulatoren auf der Basis von Lithium-Verbindungen in allen drei Phasen der elektrochemischen Zelle (inklusive Elektrolyt).

Häufig genutzte Li-Ionen Zellen:

	Leerlaufspannung, V	Energiedichte, Wh/kg
Lithium-Eisenphosphat (LiFePO ₄)	3.3	90 - 120
Lithium-Cobaltdioxid (LiCoO ₂)	3.6	150 - 200
Lithium-Nickel-Mangan-Cobaltdioxid (LiNiMnCoO ₂)	3.7	150 - 220
Lithium-Nickel-Cobalt-Aluminium (LiNiCoAlO ₂)	3.6	200 - 260
Lithiumtitanat (LiTiO ₂)	2.4	50 - 80
Lithium-Mangan (LiMn ₂ O ₄)	3.7	100-150

Lithium

Lithium (abgeleitet von altgriechisch λ ίθος *líthos* ,Stein') ist ein chemisches Element mit dem Symbol **Li** und der Ordnungszahl 3.

Lithium hat einen Anteil an der Erdkruste von etwa 0,006%.

Vorkommen und Abbau

Mengenmäßig wurden 2015 außerhalb der USA **35.000 Tonnen** Lithium gewonnen und überwiegend als Lithiumcarbonat (Li_2CO_3) gehandelt.

Die Reserven in den vorhandenen Minen werden auf rund **16 Millionen Tonnen** geschätzt (Stand: März 2018). Das Weltvorkommen aus kontinentalen Solen, geothermischen Solen, aus dem Hectorit-Mineral, Ölfeld-Solen und aus dem Magma-Gestein Pegmatit wird auf **53,8 Millionen Tonnen** geschätzt.

Die größten Ressourcen sind in folgenden Ländern:

Argentinien	9,8 Mio. Tonnen	Verwendung:
Bolivien	9 Mio. Tonnen	2% Pharma
Chile	8,4 Mio. Tonnen	2% Aluminium
China	7 Mio. Tonnen	3% Kunststoff
USA	6,8 Mio. Tonnen	4% Klimaanlagen
Australien	5 Mio. Tonnen	5% Strangguss
Kanada	5 Mio. Tonnen	12% Schmiermittel
Kongo	5 Mio. Tonnen	16% Andere
		27% Batterien
		29% Glas und Keramik
Quelle: Bundesanstalt für Geowis	senschaften und Rohstoff/ <u>USGS</u> Mineral Resources, 2018	

Cobalt

Rohstoffe

Cobalt ist ein seltenes Element der Erdkruste mit einem Anteil von etwa 0,004% und steht damit an dreißigster Stelle der nach Häufigkeit geordneten Elemente.

Abbau:

- 60% aus Kupferproduktion
- 38% aus Nickelproduktion
- 2% aus direkter Kobaltproduktion

Verwendung:

5% unbekannt

6% Katalysatoren

8% Farben/Keramik

14% Metallvergütung

18% Legierungen

49% Batterie/Chemie

© John Betts - Fine Minerals

Cobalt

Rohstoffe

Cobalt - Supply / Demand Balance (2007-2017)

Source: Darton Commodities Ltd. estimates

Mangan

Rohstoffe

Mangan ist ein häufiges Element der Erdkruste mit einem Anteil von 0,095% und damit das dritthäufigste Übergangsmetall.

Verwendung:

3% Pharma

4% Kunsstoffe

4% Aluminium

6%Klimaanlage

12% Schmiermittel

17% Glas und Keramik

27% Batterien

27% Andere

Förderung 2009: 10,8Mio Tonnen

Abbau:

26,2% China 26% Afrika 14% Australien Und weitere

Quelle: Bundesanstalt für Geowissenschaften und Rohstoff

Nickel

Rohstoffe

Nickel kommt mit einem Anteil von 0,008% in der Erdkruste vor. Im Erdkern nimmt man einen Masseanteil von 5,2% an.

Verwendung:

57% Edelstahl
13% weitere Legierungen
11% Plattierungen
9% Stahlveredler
6% Gießereien
4% sonstige

Produktion in Mio.t:

400.000 Indonesieen 230.000 Phlippinen 210.000 Neukaledonien 210.000 Kanada

190.000 Australien 180.000 Russland 140.000 Brasilien 98.000 China 86.000 Guatemala

51.000 Kuba

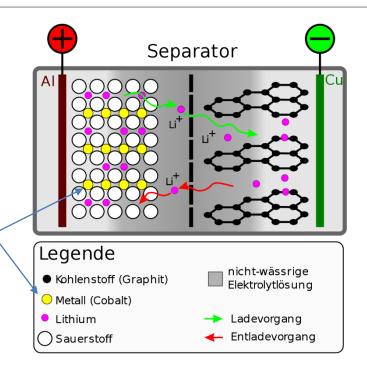
Von Alchemist-hp (talk) (www.pse-mendelejew.de) - Eigenes Werk, FAL, https://commons.wikimedia.org/w/index.php?curid=11536245

Quelle: Bundesanstalt für Geowissenschaften und Rohstoff

Li-Ionen Zellstruktur

Electrochemische Reaktionen

Anode: $\operatorname{Li}_{\mathbf{x}} C_6 \to \operatorname{Li}_0 C_6 + \mathbf{x} \operatorname{Li}^+ + \mathbf{x} e^-$


Kathode: $Li_{v-x}CoO_2 + x Li^+ + x e^- \rightarrow Li_vCoO_2$

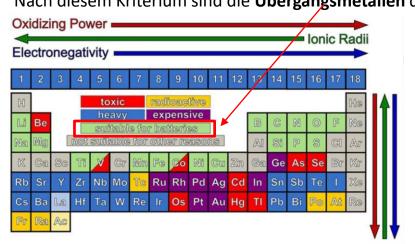
Die Parameter **x** und **y** sind stöchiometrische Koeffizienten, die Halbzellpotentiale bestimmen.

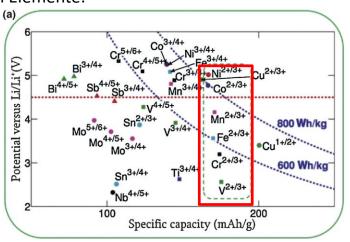
Der Halbzellpotential in Kathode ist vom Kathodenmaterial abhängig.

Als Komponenten der Kathode werden folgenden Elemente verwendet:

Cobalt, Nickel, Mangan, Aluminium, Titan.

Li-Ionen Zellstruktur

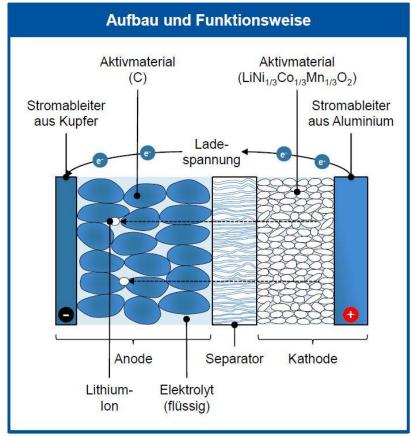

Elektrodenmaterialauswahl

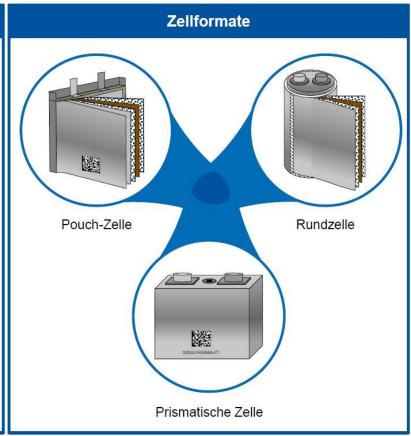


Ein Kriterium für die Auswahl des Kathodenmaterials ist die theoretische Kapazität (Ah/kg):

$$C_t = \frac{nF}{3.6M}$$

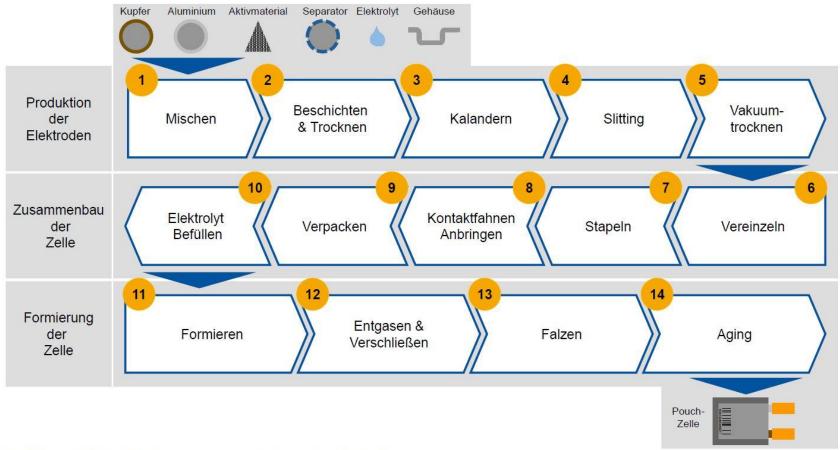
Hier *n* ist der Anzahl der reaktiven Elektronen, *F* ist Faraday Zahl, *M* ist das Molargewicht des Elements. Nach diesem Kriterium sind die **Übergangsmetallen** die besten Elemente:


Chaofeng Liu, Zachary G. Neale and Guozhong Cao. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today. Vol.19, Nu.2, 2016, pp.109-123


Die Unterschiede für die verschieden Elemente bestehen im **Wechselwirkungspotential** von Lithiumionen mit der Elektrodenkristallstruktur.

Li-Ionen Zellproduktion

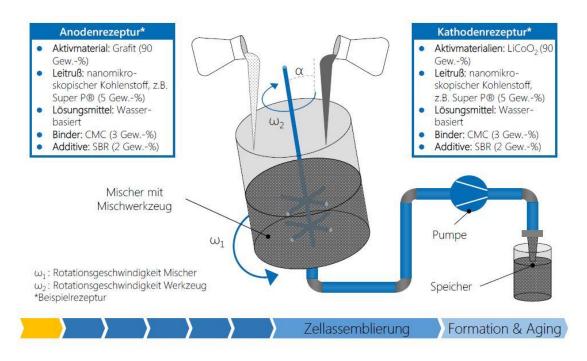
Funktionsweise und Zellformate



Quelle: Vuorilehto (2013): Materialien und Funktion, S. 22; Heimes (2014): Auswahl von Fertigungsressourcen in der Batteriezellproduktion, S. 21

Li-Ionen Zellproduktion

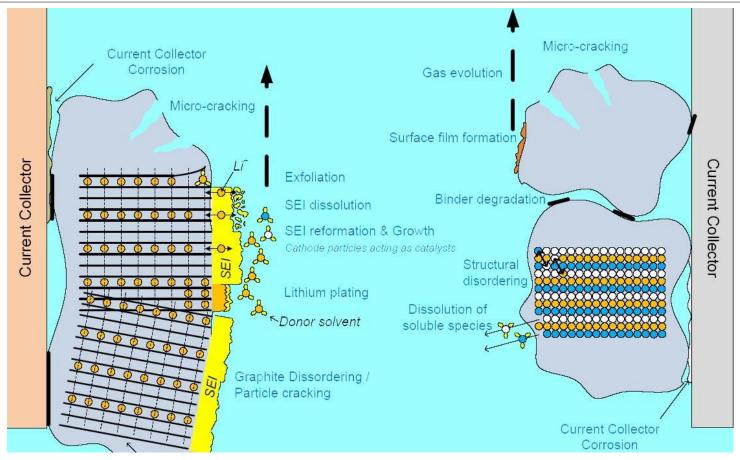
Produktionsprozesskette



Quelle: Heimes (2014): Auswahl von Fertigungsressourcen in der Batteriezellproduktion, S. 17

Li-Ionen Zellproduktion

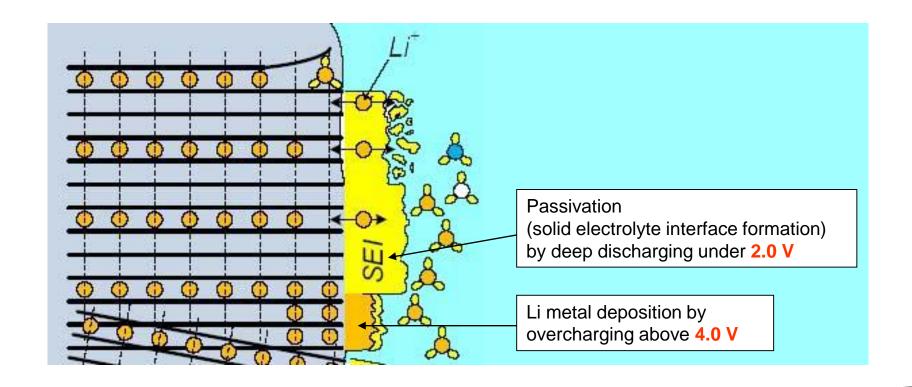
Mischen


Roadmap Batterie-Produktionsmittel 2030. VDMA Verlag GmbH, Frankfurt am Main, RWTH Aachen, Fraunhofer ISI, Battery LabFactory Braunschweig, 2018.

- Durch Energieeintrag werden mindestens zwei voneinander getrennte Ausgangsstoffe über ein rotierendes Werkzeug zu einem Slurry verbunden.
- Die Herstellung des Slurrys erfordert neben den Aktivmaterialien auch Leitadditive, Lösungs- sowie Bindemittel.
- Es bestehen drei Prozessführungen, die sich hinsichtlich der zeitlichen Reihenfolge von Mischen (Trockenmischung) und Dispergieren (Nassmischung) unterscheiden.
- Die Wahl der Misch- und Dispergierreihenfolge ist auf das zu fertigende Elektrodendesign abzustimmen.
- Der Weitertransport zum Prozessschritt "Beschichten" erfolgt durch Rohrleitungen oder in atmosphärisch abgedichteten Speichern.

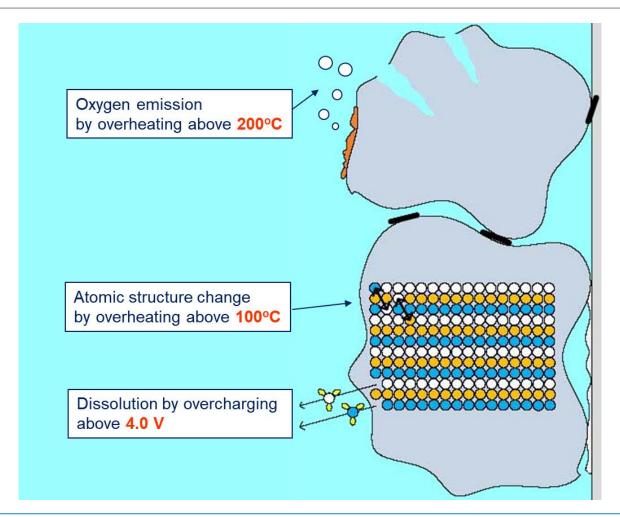
12

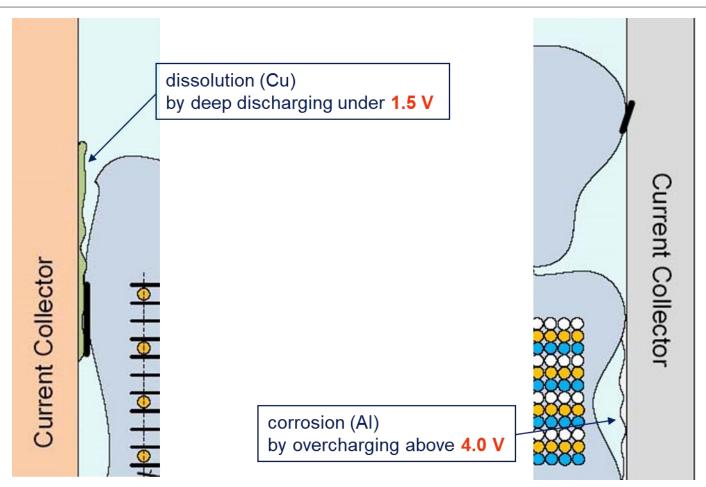
Zellschäden



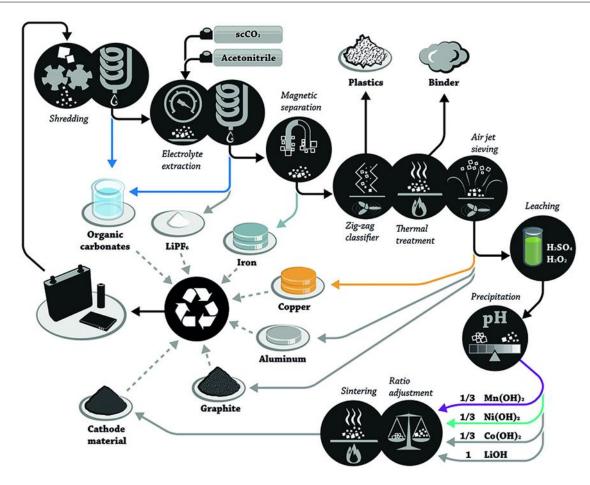
2. P.Arora, R.E.White, M.Doyle. Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries.// Journal of the Electrochemical Society, 145 (1998) 3647-3667.

3. J.Groot. State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods. Thesis for the degree of licentiate of engineering. Chalmers University of Technology, Göteborg. 2012


Zellschäden an der Anode


Zellschäden an der Kathode

Zellschäden am Kollektor



16

Zellschäden am Kollektor

Quelle: Rothermel, S.; Evertz, M.; Kasnatscheew, J.; Qi, X.; Grützke, M.; Winter, M.; Nowak, S. ChemSusChem, 9, 3473-3484 (2016) DOI: 10.1002/cssc.201601062

Li-Ionen Batterie

Batterie E-UP

