

Dekanat

Modulhandbuch für Informatik (M. Sc.)

(PO2018)

Version 1.6 - Änderungen vorbehalten, 22.02.2023

Dies ist eine veraltete Version. Die aktuellen Modulhandbücher finden Sie unter: www.ostfalia.de/i/mhb

Inhaltsverzeichnis

1	Allgem	Allgemeine Hinweise 4						
1.1	How to	read this book, special language arrangements	4					
1.2	Leseanl	leitung und sprachliche Spezialangebote	4					
1.3	Hinweis	e zu Formularfeldern und Modulprüfungen	4					
1.4	Hinweis	e zu Schwerpunkten	4					
1.5	Hinweis	Hinweise zu Wahlpflichtfächern						
1.6	Weitere	Weitere Informationen in Prüfungsordnung (PO) und Leitfaden						
1.7	Abkürzungsverzeichnis							
2	Qualifik	kationsziele/Intendierte Lernergebnisse	6					
3	Modulb	eschreibungen	7					
3.1	Grundla	ngenteil - allgemein	7					
	3.1.1	Seminar (Master)	7					
	3.1.2	Projekt	8					
3.2	Grundla	genteil / Kompetenzteil Software Engineering	9					
	3.2.1	Architekturen moderner Informationssysteme	9					
	3.2.2	Effiziente Algorithmen	10					
	3.2.3	Entwicklung großer Anwendungssysteme	11					
	3.2.4	Formale Methoden	12					
	3.2.5	IT-Management	13					
	3.2.6	Modellgetriebene Software-Entwicklung	14					
	3.2.7	Software Engineering Projekt (Master)	15					
	3.2.8	User Interfaces für Mobile Systeme	16					
	3.2.9	Wissenschaftliches Rechnen	17					
3.3	Grundla	genteil / Kompetenzteil Information Engineering	19					
	3.3.1	Angewandte Kryptographie	19					
	3.3.2	Automatische Sprachverarbeitung	21					
	3.3.3	Big Data	22					
	3.3.4	Datenbanktechnologien	23					
	3.3.5	Echtzeitverarbeitung von Datenströmen (Stream Processing)	24					
	3.3.6	Fortgeschrittene Themen der IT-Security	25					
	3.3.7	Heuristische Suche	26					
	3.3.8	Industrielle Bildverarbeitung	27					
	3.3.9	Maschinelles Lernen	29					
	3.3.10	Neuronale Netze und Deep Learning	30					
	3.3.11	Statistische Methoden	31					

Modulhandbuch (PO 2018) - Informatik (M. Sc.)

3.4	Grundla	agenteil / Kompetenzteil Systems and Computer Engineering	32	
	3.4.1	Automotive Systems	32	
	3.4.2	Autonomous Systems	33	
	3.4.3	Innovative Rechnersysteme	34	
	3.4.4	Location Based Assistance	35	
	3.4.5	Mensch-Roboter-Interaktion	37	
	3.4.6	Robotik (Robotics/Cobotics)	38	
	3.4.7	Robuste Systeme	39	
	3.4.8	Simulation und Verifikation	40	
	3.4.9	Smart IoT (Internet of Things)	41	
	3.4.10	Softwareintensive Systeme in der Mobilität	42	
3.5	Weitere	· Wahlpflichtfächer – ohne Schwerpunktzuordnung	43	
	3.5.1	Entwicklung digitaler Geschäftsmodelle	43	
	3.5.2	Programmierparadigmen C++	44	
	3.5.3	Gesprächs- und Verhandlungsführung - Leitung von Arbeitsgruppen	45	
3.6	Mastera	arbeit mit Kolloquium	46	
4	Modulü	ibersichten – Informatik M. Sc.	47	
5	Modulü	ibersichtstabelle	48	
6	Zuordnung Module zu den Schwerpunkten			
7	Dokum	enthistorie	52	

Suchen (bzw. Finden) innerhalb eines PDFs / einer Word-Datei mit <Strg> <F>

1 Allgemeine Hinweise

1.1 How to read this book, special language arrangements

This handbook specifies for major Computer Science (M. Sc.) the content of each learning module. In addition, prerequisites for participation in a class and test forms are described. In the following chapters classes are sorted by specialisation.

Each module is generally available in German. Deviations will be announced seperately. On request, most lecturers give additional material in English and can arrange exams in English. Please contact your lecturer for information and special arrangements.

1.2 Leseanleitung und sprachliche Spezialangebote

Dieses Modulhandbuch beschreibt für den Studiengang Informatik (M. Sc.), welche Inhalte in den Lehrveranstaltungen vermittelt werden. Weiterhin sind die Vorbedingungen zur Belegung der Lehrveranstaltung und die Prüfungsform benannt. Die Lehrveranstaltungen sind nach Schwerpunkten sortiert.

Jedes Modul wird auf Deutsch angeboten. Bei Bedarf stellen die Lehrenden zusätzliches Material auf Englisch zur Verfügung. Prüfungen auf Englisch sind grundsätzlich möglich. Bitte kontaktieren Sie hierzu Ihre Dozentinnen und Dozenten.

1.3 Hinweise zu Formularfeldern und Modulprüfungen

ECTS = "European Credit Transfer and Accumulation System". Das ECTS ermöglicht Studierenden die einfache Anerkennung von im In- und Ausland erbrachten Studienleistungen. Dabei werden jedem Modul eine bestimmte Anzahl an Leistungspunkten zugeordnet, die dann bei erfolgreichem Abschluss einer Veranstaltung angerechnet werden.

Die studentische Arbeitsbelastung wird als Mittelwert aufgeführt. Der erforderliche Aufwand setzt sich aus der Kontaktzeit (= Veranstaltung) und dem Eigenanteil zusammen. Pro Lehrveranstaltung müssen ca. sechs Stunden für Anwesenheit sowie Vor- und Nachbereitung gerechnet werden.

Die Lehrenden geben die angewendete Prüfungsform und die Lehrformen zu Anfang jedes Semesters in der Lehrveranstaltung bekannt. Mündliche Prüfungen dauern 15-30 Minuten. Eine besondere Prüfungsform stellen die Modulprüfungen dar. Wenn in den Lehrveranstaltungen desselben Moduls die "Modulprüfung" angewendet wird, dann werden die Inhalte aller Lehrveranstaltungen dieses Moduls gleichzeitig in einer gemeinsamen Prüfung abgefragt.

SWS = Semesterwochenstunden; 2 SWS entsprechen 90 Minuten.

1.4 Hinweise zu Schwerpunkten

Fächer aus folgenden Schwerpunkten werden im Masterstudiengang Informatik an der Ostfalia Hochschule Braunschweig/Wolfenbüttel angeboten:

- Information Engineering
- Software Engineering
- Systems and Computer Engineering

Je nach Interesse können ab dem 1. Semester Vorlesungen belegt werden. Eine 2-Jahresübersicht wird auf den Internetseiten der Fakultät im **Downloadbereich** bei den Modulhandbüchern bereitgestellt. Bei der Zusammenstellung des individuellen Stundenplans der Studierenden müssen immer auch die aktuellen Hinweise beachtet werden, die auf den Internetseiten der Fakultät bekanntgegeben werden.

Alternativ kann das 3. Semester auch im Ausland absolviert werden. Nähere Informationen dazu werden im Internet bereitgestellt unter: www.ostfalia.de/i/international.

1.5 Hinweise zu Wahlpflichtfächern

Grundsätzlich sind fast alle Fächer Wahlpflichtfächer. Die Zusammenstellung ist frei.

1.6 Weitere Informationen in Prüfungsordnung (PO) und Leitfaden

Weitere Informationen zum Studiengang Informatik (M. Sc.) stehen in der Prüfungsordnung sowie im Dokument "Leitfaden für die Informatik-Präsenzstudiengänge".

- In der **Prüfungsordnung** (PO) ist das Studium grundlegend geregelt. Sie enthält insbesondere das Curriculum, die Prüfungsformen und die Wiederholungsmöglichkeiten. Bei Widersprüchen zwischen Modulhandbuch und Prüfungsordnung gilt die Prüfungsordnung.
- Im "Leitfaden für die Informatik-Präsenzstudiengänge" werden für alle Präsenz-Studiengänge der Fakultät Informatik die grundlegenden organisatorischen Abläufe beschrieben.

1.7 Abkürzungsverzeichnis

EA	Experimentelle Arbeit	PA	Projektarbeit
EP	Elektronische Prüfung	РВ	Praxisbericht
Н	Hausarbeit	PF	Portfolioprüfung
K	Klausur	PO	Prüfungsordnung
М	Mündliche Prüfung	R	Referat

2 Qualifikationsziele/Intendierte Lernergebnisse

Der Studiengang "Informatik (M.Sc.)" ist berufsqualifizierend. Er befähigt zum eigenständigen, lebenslangen Lernen und zur praxisnahen sowie theoretischen Arbeit im Team in lokalen und globalen Projekten, sowie zur Analyse komplexer Systeme, angeleiteten Forschung und Führung von Projekten. Tätigkeitsfelder von Absolventinnen und Absolventen sind in einem breiten Themenbereich zu finden, sowohl branchenspezifisch als auch branchenneutral:

- Technische Infrastruktur
- Automobilsektor
- Luft- und Raumfahrt
- Eisenbahntechnik
- Automatisierung und Robotik
- Medizintechnik

Die Absolventinnen und Absolventen können, je nach Wahl der Vertiefung gewichtet, mit den folgenden Aufgaben betreut werden:

- Anforderungsanalyse
- Produktentwicklung
- Simulation
- Life cycle planning
- Projektleitung

Die Absolventinnen und Absolventen berücksichtigen ethische und ökonomische Rahmenbedingungen und Auswirkungen ihrer Arbeit.

- Das Studium bietet eine Vertiefung der Basiskompetenzen aus dem Bachelorstudium Informatik oder vergleichbar und deren Erweiterung in:
- Theoretische Informatik, Informationstheorie, Metriken und Qualität
- Mathematik und UML / Systems Modeling Language
- Analyse, Entwicklung und Evaluation von Hardware oder Software
- Aspekte von Performance, Echtzeit, Sicherheit und Verteilung
- Moderation, Gesprächs- und Verhandlungsführung

Die Auffächerung des Studiums in Information Engineering, Software Engineering, oder Systems and Computer Engineering ermöglicht die Erweiterung und Vertiefung von fachlichem Spezialwissen in mindestens einem Schwerpunkt der jeweiligen Unterdisziplin nach dem aktuellen Stand der Technik.

Die daraus resultierenden Kompetenzen umfassen insbesondere die theoretischen Kenntnisse und praktischen Befähigungen zum Arbeiten nach dem Stand der Technik in den jeweiligen Aufgaben, sowohl eigenständig als auch verzahnt mit selbst gewählten fachlichen Forschungsprojekten:

- Kenntnis und Bewertung des aktuellen Stands der Technik in mindestens einem Schwerpunkt
- Eigenständige Literaturrecherche und Selbststudium
- Sorgfalt, Verantwortung und Teamarbeit
- Innovation, Konzeption, Modellierung auf erh
 öhtem Niveau
- Kritik, Perspektiven und Leadership
- Analyse und Evaluation simulierter oder existierender komplexer Systeme
- Konzeption, Umsetzung und Erprobung komplexer HW-/SW-Systeme

Der Zugang zum Masterstudiengang "Informatik" wird durch die "Ordnung über den Zugang und die Zulassung für den konsekutiven Masterstudiengang Informatik" geregelt.

3 Modulbeschreibungen

3.1 Grundlagenteil - allgemein

3.1.1 Seminar (Master)

Studiengang: Informatik (M. Sc.)							
Modul:	Grundlagent	Grundlagenteil					
Modul alte PO (2013):							
Lehrveranstaltung:	Seminar (Master)						
LV alte PO (2013):							
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
1	1	1	Pflicht	5.0	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium		

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Master Informatik	Studiendekan
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
R	Seminar	

Kompetenzziele (nach Bloom)

Studierende

- referieren selbstständig über ein fortgeschrittenes auszuwählendes Thema der Informatik
- verwenden gute Präsentationsstile
- diskutieren aktuelle, fortgeschrittene Themen der Informatik

Synthese: Inhalte verständlich und rhetorisch/gestalterisch angemessen präsentieren. Erläutern des Themas anhand geeigneter Beispiele. Zusammenhänge zu anderen Vortragsthemen oder Themen des Informatikstudiums herstellen.

Evaluation: angemessenes Feedback zu Vorträgen geben, aufgreifen und umsetzen

Lehrinhalte

• Aus aktuellen Themen der Informatik wählen alle Studierenden ihr zu referierendes Gebiet und präsentieren ihre inhaltliche Erarbeitung

Literatur

· Nach Bekanntgabe in der Lehrveranstaltung

3.1.2 Projekt

Studiengang: Informatik (M. Sc.)							
Modul:	Grundlagent	Grundlagenteil					
Modul alte PO (2013):							
Lehrveranstaltung:	Projekt	Projekt					
LV alte PO (2013):							
Semester	Dauer Häufigkeit Art ECTS- Studentische (Sem.) (pro Jahr) ECTS- Punkte Arbeitsbelastung						
2	1	1	Pflicht	5.0	150h, davon 30% Kontakt und 70% Eigenstudium		

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Master Informatik	Studiendekan
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
PA	Seminar	

Kompetenzziele (nach Bloom)

Studierende

- referieren zu und erarbeiten ein forschungsnahes Projekt, selbstständig, über ein fortgeschrittenes auszuwählendes Thema der Informatik
- verwenden gute Präsentationsstile und Systematiken
- diskutieren aktuelle, fortgeschrittene Themen der Informatik in Forschungsgruppen

Lehrinhalte

Aus aktuellen Themen der Informatik wählen alle Studierenden ihr zu referierendes Gebiet, erarbeiten dieses theoretisch und praktisch, und präsentieren ihre Ergebnisse

Literatur

Nach Bekanntgabe in der Lehrveranstaltung

3.2 Grundlagenteil / Kompetenzteil Software Engineering

3.2.1 Architekturen moderner Informationssysteme

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	Grundlagenteil / Kompetenzteil Software Engineering				
Modul alte PO (2013):						
Lehrveranstaltung:	Architekturen moderner Informationssysteme					
LV alte PO (2013):						
Semester	Dauer (Sem.) Häufigkeit Art ECTS- Studentische Arbeitsbelastung					
1-3	1	1	Wahlpflicht	5.0	150h	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Software Engineering, WPF (nur Master)	Prof. B. Müller
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h	Seminaristische Vorlesung	

Kompetenzziele (nach Bloom)

Studierende

- kennen Vorgehensweisen zur Architekturentwicklung
- können Architektursichten erstellen
- können typische Architekturaspekte beurteilen und einschätzen
- können Architekturalternativen vergleichen
- können vergleichende Architekturversuche erstellen und durchführen

Lehrinhalte

- · Was ist Architektur?
- Erkenntnistheoretische vs. Hype-basierte Architekturbewertung
- Möglichkeiten der Architekturdokumentation
- Reactive Systems
- Microservices
- Serverless Architekturen

- Paolo Di Francesco, Architecting Microservices, 2017 IEEE International Conference on Software Architecture, Gothenburg, Sweden, 2017.
- Eberhard Wolff. Microservices Grundlagen flexibler Softwarearchitekturen. DPunkt, 2014.
- Adam Bien. Real World Java EE Patterns Rethinking Best Practices. Lulu 2014.
- Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
- Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley, 2003.
- Carola Lilienthal. Langlebige Software-Architekturen. DPunkt, 2015.
- Stefan Tilkov, Martin Eigenbrodt, Silvia Schreier, Oliver Wolf. REST und HTTP. DPunkt 2015.
- Savas Parastatidis, Jim Webber, Ian Robinson. REST in Practice Hypermedia and Systems Architecture. O'Reilly, 2010.

3.2.2 Effiziente Algorithmen

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	Grundlagenteil / Kompetenzteil Software Engineering				
Modul alte PO (2013):	Theorie der	Theorie der Informatik				
Lehrveranstaltung:	Effiziente Algorithmen					
LV alte PO (2013):	Komplexität und Berechenbarkeit					
Semester	Dauer Häufigkeit Art ECTS- Studentische Arbeitsbelastung					
1-3	1	1	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Software Engineering, WPF (nur Master)	Prof. J. Weimar
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/M/PA	Seminaristische Vorlesung mit Projektarbeitsanteilen	

Kompetenzziele (nach Bloom)

Die Studierenden

- kennen effiziente Algorithmen aus verschiedenen Teilbereichen
- können die Komplexität eines Algorithmus abschätzen
- kennen die Begriffe der Komplexitätstheorie und können das N vs NP-Problem erläutern
- haben selbst mehrere Algorithmen umgesetzt und die Effizienz in der Praxis getestet.

Lehrinhalte

mindestens zwei Gebiete aus den folgenden:

Algorithmen zu Zeichenketten: effiziente Suche, Vergleich, Suffix-Trees

geometrische Algorithmen: Konvexxe Hülle, Voronoi-Diagramm, k-nearest Neighbors

Algorithmen zur Erfüllbarkeit aussagenlogischer Formeln: Horn-Formeln, Resolution, Heuristiken, SAT-solver

Literatur

Nach Bekanntgabe in der Lehrveranstaltung

3.2.3 Entwicklung großer Anwendungssysteme

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagent	Grundlagenteil / Kompetenzteil Software Engineering			
Modul alte PO (2013):	Software-Engineering				
Lehrveranstaltung:	Entwicklung großer Anwendungssysteme				
LV alte PO (2013):	Entwicklung	Komplexer Sof	ftwaresysteme		
Semester	Dauer Häufigkeit Art ECTS- Studentische (Sem.) (pro Jahr) Punkte Arbeitsbelastung				
1-3	1	1	Wahlpflicht	5.0	150h (ca. 40% Kontakt-, 60% Eigenstudium)

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Software Engineering, WPF (nur Master)	Prof. B. Müller
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h	Seminaristische Vorlesung	

Kompetenzziele (nach Bloom)

Studierende

- verstehen die Problemstellungen komplexer Software-Systeme und können diese darstellen
- können verschieden Alternativen bei der Umsetzung großer und komplexer Anwendungssysteme bewerten
- können große Anwendungssyteme realisieren
- kennen Jakarta-EE-APIs und können diese in der Umsetzung von Anwendungssystemen verwenden

Lehrinhalte

- Standardarchitekturen von Anwendungssystemen
- Jakarta Enterprise Edition
- Verwendung und Kombination dieser APIs zur Realisierung von Anwendungssystemen

- Arun Gupta. Java EE 7 Essentials. O'Reilly, 2013.
- Dirk Weil. Java EE 7. Enterprise-Anwendungsentwicklung leicht gemacht, DPunkt, 2015.
- Marcus Schießer, Martin Schmollinger . Workshop Java EE 7. DPunkt, 2014.

3.2.4 Formale Methoden

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten	zteil Software Er	ngineering		
Modul alte PO (2013):						
Lehrveranstaltung:	Formale Met	Formale Methoden				
LV alte PO (2013):						
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1-3	1	jedes 3. Sem.	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
	Schwerpunkt Software Engineering, WPF (nur Master)	Prof. M. Huhn
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/PA: 50%/50%	Seminaristische Vorlesung, Übung, Durchführung und Präsentation von Projekten durch Studierende	

Kompetenzziele (nach Bloom)

Studierende sind nach erfolgreicher Teilnahme an diesem Modul

- in der Lage, digitale Systeme und Systemeigenschaften formal zu modellieren,
- kennen die grundlegenden Algorithmen, um Systemeigenschaften automatisch formal zu analysieren und zu verifizieren.
- können eine werkzeuggestützte formale Verifikation für kleinere Beispiele durchführen
- in der Lage, die Möglichkeiten und Grenzen des Einsatzes formaler Methoden zu beurteilen.

Lehrinhalte

Modellierung und Analyse des Systemsverhaltens mit formalen Verifikationstechniken, insb. Model Checking, Verwendung von Verifikationswerkzeugen typische Szenarien in Software-, Hardware- und cyberphysikalischen Systemen.

Literatur

Christel Baier, Joost-Pieter Katoen: Principles of Model Checking, MIT Press; 2008

3.2.5 IT-Management

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten	zteil Software Er	ngineering		
Modul alte PO (2013):						
Lehrveranstaltung:	IT-Managem	IT-Management				
LV alte PO (2013):	ehemals in F	PO2018: IT-Pro	jekte und Servid	es im Ente	prise-Umfeld	
Semester	Dauer (Sem.)	2 g 2				
1-3	1	1	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Software Engineering, WPF (nur Master)	Prof. H. Grönniger
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/PA	Vorlesung, Übung, Durchführung und Präsentation von Projekten durch Studierende	

Kompetenzziele (nach Bloom)

- Themen des IT-Management verstehen und einordnen können
- Struktur und Abläufe einer Unternehmens-IT verstehen
- Erlernen von praktischen Fähigkeiten für Cloud-Infrastrukturen
- Erlernen und Anwenden von IT-Management Prozesse aus den Bereichen IT-Strategie, IT-Service Management, Enterprise Architecture, IT-Projektmanagement

Lehrinhalte

Die Vorlesung behandelt das Thema IT-Management. Es geht um eine Management-Perspektive aber auch die technologische Sicht kommt nicht zu kurz.

Themenauswahl:

- Aufbau und Einbettung der IT in Unternehmen
- Übersicht über die Aufgabengebiete der IT und des IT-Management
- IT-Infrastrukturen mit praktischen Teilen im Bereich Cloud / Infrastructure-as-a-Service
- IT-Strategie: Entwicklung von IT-Strategien im Unternehmen
- IT-Services und IT-Service Management: wie wird der reibungslose Ablauf des operativen IT-Betriebs organisiert.
- Enterprise Architecture Management: wie werden Geschäftsprozesse und Anwendungslandschaft in Einklang gebracht
- IT-Projekte: bringen Veränderung in die IT-Landschaft und müssen je nach Art der Aufgabe strukturiert und im Unternehmen verankert werden

Literatur

Wird in der Veranstaltung bekannt gegeben

3.2.6 Modellgetriebene Software-Entwicklung

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagent	eil / Kompeten	zteil Software Er	ngineering	
Modul alte PO (2013):					
Lehrveranstaltung:	Modellgetrie	Modellgetriebene Software-Entwicklung			
LV alte PO (2013):					
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung
1-3	1	1	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Software Engineering, WPF (nur Master)	Prof. M. Huhn
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
EA/K1,5h/M	Seminaristische Vorlesung mit Projektarbeitsanteilen	

Kompetenzziele (nach Bloom)

Kenntnis des Paradigmas und der Konzepte der modellgetriebenen Softwareentwicklung Verständnis für Anwendungsbereiche und Grenzen modellgetriebener Software-Entwicklung Anwendung der Lehrinhalte auf konkrete Beispiele mit den in der Vorlesung vorgestellten Werkzeugen Durchführung eines MDSD-Projekts, z.B. Mini-DSL Entwicklung oder Model Checking (Synthese)

Lehrinhalte

Modellgetriebene Entwicklungsprozesse

OMG MDA vs. MDSD

UML, UML Profile, AADL

Eclipse Modeling Framework

Modell-Transformationen

DSL Engineering

Codegenerierung als Model2Text Transformation

MDSD-Werkzeuge

Modell-Analyse

Modelle in der Verifikation und Model Checking

Literatur

Nach Bekanntgabe in der Lehrveranstaltung

3.2.7 Software Engineering Projekt (Master)

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten:	zteil Software Er	ngineering		
Modul alte PO (2013):	Software-En	gineering				
Lehrveranstaltung:	Software En	Software Engineering Projekt (Master)				
LV alte PO (2013):	Software-En	gineering Proje	ekt			
Semester	Dauer (Sem.)					
1-3	1	1	Wahlpflicht	5.0	150h (ca. 10% Kontakt-, 90% Entwicklungs- arbeit)	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Software Engineering, WPF (nur Master)	Prof. B. Müller
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
PA	Projektarbeit	

Kompetenzziele (nach Bloom)

Studierende

- können sämtliche Tätigkeiten des Software-Entwicklungsprozesses praxisnah umsetzen
- können theoretische Kenntnisse in der Paxis anwenden (Transferkompetenz)
- besitzen technische Kompetenz (Programmiersprache, Entwicklungsumgebung, Werkzeuge, ...)
- besitzen soziale Kompetenz und können Konfliktsituationen meistern
- können Führungsaufgaben in der Software-Entwicklung wahrnehmen
- können Entwicklungsprozesse bewerten

Lehrinhalte

- Formen der Team-Arbeit
- Scrum, Source-Code-Repositories
- Build-Werkzeuge

- Arun Gupta. Java EE 7 Essentials. O'Reilly, 2013.
- Jeff Sutherland. The Art of Doing Twice the Work in Half the Time. Currency, 2014.
- Kenneth S. Rubin. Essential Scrum: A Practical Guide to the Most Popular Agile Process. Addison-Wesley 2012

3.2.8 User Interfaces für Mobile Systeme

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten	zteil Software Er	ngineering		
Modul alte PO (2013):						
Lehrveranstaltung:	User Interfac	User Interfaces für Mobile Systeme				
LV alte PO (2013):						
Semester	Dauer (Sem.)					
1-3	1	1	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Software Engineering, WPF (nur Master)	Prof. J. Weimar
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/M/PA	Seminaristische Vorlesung mit Projektanteilen	

Kompetenzziele (nach Bloom)

Studierende

gestalten mobile Softwaresysteme theoretisch fundiert und mit systematischen Ansätzen benutzergerecht und gebrauchstauglich

kennen zentrale Begriffe, gesetzliche Grundlagen und Normen

kennen die besonderen Eigenschaften mobile Eingabegeräte und können Anwendungen spezifisch darauf zuschneiden

erläutern benutzerzentrierte Vorgehensmodelle der Software-Ergonomie im Software-

Entwicklungsprozess für mobile Systeme

kennen und verwenden Methoden zur nutzerbezogenen Anforderungsanalyse

Lehrinhalte

Benutzeroberflächen gängiger mobiler Geräte Gestaltungsrichtlinien für iOS und Android

innovative Bedienkonzepte bei mobilen Geräten

Einsatz von verschiedensten Sensoren

Nutzung von Kontext

Oberflächenentwicklung für Anroid und/oder iOS

Literatur

http://developer.android.com http://develper.apple.com

3.2.9 Wissenschaftliches Rechnen

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten:	zteil Software Er	ngineering		
Modul alte PO (2013):	Theorie der	Theorie der Informatik				
Lehrveranstaltung:	Wissenscha	Wissenschaftliches Rechnen				
LV alte PO (2013):	Numerische	Numerische Algorithmen				
Semester	Dauer (Sem.)					
1-3	1					

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Software Engineering, WPF (nur Master)	Prof. P. Riegler
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/M/PA	Seminaristische Vorlesung mit Projektanteilen	

Kompetenzziele (nach Bloom)

Bei einer Vielzahl wissenschaftlicher und technischer Fragestellungen kommen heute mathematische Modelle, Experimente und Computersimulationen zum Einsatz. Dieses Modul vermittelt den Studierenden grundlegende Verfahren und Techniken des der Numerik und des wisschenschaftlichen Rechnens. Die Studierenden kennen Grundkonzepte des numerischen Rechnens, Eigenschaften und Randbedingungen für die Anwendung.

Sie verstehen die mathematische Modellierung wissenschaftlich, technischer Fragestellungen und können verschiedene numerische Verfahren zum Lösen wichtiger Probleme (wie lineare Gleichungssysteme, Interpolation von Funktionen Differentailgleichungen) anwenden, die Ergebnisse beurteilen und können anhand der Randbedingungen von Anwendungen geeignete Methoden auswählen. Die Studierende kennen gängige Softwaresysteme zur Lösung mathematischer Probleme und können numerische Lösungsverfahren algorithmisch umsetzen.

Lehrinhalte

Mathematische Modellierung

Wiederholung Lineare Algebra, Funktionen, Differentialgleichungen

Numerische Algorithmen

Fliesskommazahlen, Genauigkeit, Stabilität

Lösen linearer Gleichungssysteme, Optimierungsprobleme

Interpolation

FFT

Näherungsalgorithmen

Wissenschaftliche Rechnen

Bibliotheken

Anwendungen (Finite Elemente, Matlab/Mathematica, etc).

- W. Press: Numerical Recipes The Art of Scientific Computing, 3rd Edition, 2007, Cambridge University Press
- W. Gander, M. Gander, F. Kwok: Scientific Computing An Introduction using Maple and MATLAB, 2014, Springer

3.3 Grundlagenteil / Kompetenzteil Information Engineering

3.3.1 Angewandte Kryptographie

Studiengang: Informatik (M. Sc.)							
Modul:	Grundlagent	eil / Kompeten	zteil Information	Engineerin	g		
Modul alte PO (2013):	Theorie der	Informatik					
Lehrveranstaltung:	Angewandte	Angewandte Kryptographie					
LV alte PO (2013):	Informations	theorie					
Semester	Dauer (Sem.)						
1-3	1						

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Information Engineering, WPF (nur Master)	Prof. I. Schiering
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/EA	Vorlesung, Übungen, Durchführung und Präsentation von Projekten durch Studierende	

Kompetenzziele (nach Bloom)

Studierende

- kennen kryptographische Verfahren und die mathematische Grundlagen dazu
- analysieren Sicherheitsanforderungen von Kommunikation
- und können kryptographische Verfahren und Protokolle dazu auswählen bzw. potentielle Schwachstellen herausarbeiten und bewerten
- können sich neue Aspekte in diesem Zusammenhang eigenständig erarbeiten und umsetzen
- erproben im Rahmen der Projekte Forschungsmethodiken anhand konkreter Fragestellungen des Security Engineering und Privacy Engineering

Lehrinhalte

- Stream Ciphers / Block Ciphers
- Symmetric Encryption (AES)
- Modes of Operation (ECB, CBC, OFB, ...)
- Asymmetric Ciphers (RSA, Diffie-Hellman, ECC)
- Anwendungen: Auswahl aus Digitale Signaturen, Cryptographic Hash Functions, Message Authentication Codes, Key Management
- Fortgeschrittene Themen: Auswahl aus Zero-Knowledge Proofs, Post-Quantum Cryptography, Blockchain, Homomorphic Encryption, etc.
- Innerhalb eines begleitenden Projekts setzen sich Studierende wissenschaftlich mit Aspekten des Security Engineering und Privacy Engineering auseinander. Dabei sollen gezielt verschiedene Forschungsmethodiken eingesetzt und vorgestellt werden.

Literatur

Paar, Christof, and Jan Pelzl. Understanding cryptography: a textbook for students and practitioners. Springer Science & Business Media, 2009.

Bernstein, Daniel J., Johannes Buchmann, and Erik Dahmen, eds. Post-quantum cryptography. Springer Science & Business Media, 2009.

Menezes, Alfred J., Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography. CRC press, 1996.

Weitere aktuelle Literatur wird in der Vorlesung angegeben

3.3.2 Automatische Sprachverarbeitung

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagent	eil / Kompeten	zteil Information	Engineerin	g
Modul alte PO (2013):					
Lehrveranstaltung:	Automatische Sprachverarbeitung				
LV alte PO (2013):					
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung
1-3	1	1 in 1,5 J.	Wahlpflicht	5.0	150h, davon ca. 40% Kontakt

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Information Engineering, WPF (nur Master)	Prof. C. Meyer
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h	begleitende Übungsaufgaben zur eigenständigen Bearbeitung (im Team) und Vertiefung der Vorlesungsinhalte	

Kompetenzziele (nach Bloom)

Wichtige Anwendungen der automatischen Sprachverarbeitung kennenlernen; grundlegende Algorithmen der automatischen Sprachverarbeitung (Schwerpunkt Spracherkennung) mit deren Vor- und Nachteilen sowie aktuelle Möglichkeiten und Grenzen der Technologie verstehen; erste praktische Erfahrungen im Labor sammeln; Ergebnisse von Experimenten und Analysen analysieren und darstellen

Lehrinhalte

- Feature extraction
- · Acoustic modeling
- Training and adaptation methods
- Language modeling
- Search
- Selected methods of natural language understanding
- Dialogue systems
- · Applications, systems and architectures

- L. Rabiner, B. H. Juang, "Fundamentals of Speech Recognition", Prentice Hall, 1993
- X. Huang, A. Acero, H. W. Hon: "Spoken Language Processing", Prentice Hall, 2001
- F. Jelinek, "Statistical Methods for Speech Recognition", MIT Press, 1997
- D. Jurafsky, J. H. Martin, "Speech and Language Processing", Prentice Hall, 2nd edition, 2008 (weitere Literatur in der Vorlesung)

3.3.3 Big Data

Studiengang: Informatik (M. Sc.)							
Modul:	Grundlagent	eil / Kompeten	zteil Information	Engineerin	g		
Modul alte PO (2013):							
Lehrveranstaltung:	Big Data	Big Data					
LV alte PO (2013):							
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
1-3	1	1	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium		

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Information Engineering, WPF (nur Master)	Prof. F. Höppner
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/PA	begleitende Übungsaufgaben zur eigenständigen Bearbeitung und Vertiefung der Vorlesungsinhalte, Abschlussaufgabe	

Kompetenzziele (nach Bloom)

- Spezifische Probleme und Lösungsansätze von Big Data charakterisieren und motivieren.
- erste Big Data Lösungen in verschiedenen Paradigmen umsetzen und nach Effizienz bewerten.
- Fähigkeit zur sinnvollen Strukturierung und Präsentation einer (eigenen) Lösung

Lehrinhalte

- Typische Problemstellungen und charakteristische Schwierigkeiten von Big Data
- Aufbau der verteilten Infrastruktur Apache Hadoop (HDFS, Map/Reduce, Spark), Abläufe, Engpässe
- verteilte Informationsverarbeitung mit Hadoop Map/Reduce in Java
- Map/Reduce Design-Patterns
- · Vorzüge des funktionalen Paradigma, funktionale Programmierung mit Scala
- Aufbau und Funktionsweise Apache Spark, Unterschiede Map/Reduce
- Umsetzungen mit Spark, Resilient Distributed Datasets, Transformationen und Jobs
- Spark Streaming
- Ausgewählte Problemstellungen/Lösungstechniken aus Bereichen Datenanalyse und Inf-Retrieval (mllib, Bloom-Filter, Locality Sensitive Hashing, ...)

- · White: Hadoop The Definite Guide, O'Reilly
- Karau, Konwinski: Learning Spark: Lightning-Fast Big Data Analysis, O'Reilly
- · Odersky, Spoon: Programming in Scala, artima

3.3.4 Datenbanktechnologien

Studiengang: Informatik (M. Sc.)							
Modul:	Grundlagent	eil / Kompeten:	zteil Information	Engineerin	g		
Modul alte PO (2013):	Kompetenzs	emester					
Lehrveranstaltung:	Datenbanktechnologien						
LV alte PO (2013):	Datenbankte	chnologie / Da	tawarehouse				
Semester	Dauer (Sem.)						
1-3	1	1 1 Wahlpflicht 5.0 150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium					

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkte Software Engineering und Information Engineering, WPF (nur Master)	Prof. F. Höppner
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h	Vorlesung und Übungen	

Kompetenzziele (nach Bloom)

Verstehen: Verständnis der Abläufe in einem RDBMS von der SQL-Anfrage bis zum Ergebnis, grundlegende Technologie zur Sicherung der ACID-Eigenschaften von Transaktionen, Verständnis der unterschiedlichen Anforderungsprofile und Technologien aus der SQL und NoSQL-Welt

Anwenden: Anwendung der Verfahren (z.B. Anfrageoptimierung, Recovery) auf konkrete Anwendungsfälle

Analyse: Abschätzung/Prognose der Effekte von Änderungen an der DB (z.B. Indizes) auf Basis der Anfrageopimierung, Bewertung der Eignung von (No)SQL-DB-Technologie zu einem gegebenem Anwendungsfall

nicht-kognitive Kompetenzen: Präsentation von erarbeiteten Lösungen zu Aufgaben

Lehrinhalte

Datenorganisation (Speicherung von Tupeln, Relationen, Indizes)

Anfrage-Optimierung in relationalen DBMS (Anfrageplan, Optimierung)

Recovery nach Ausfall

Synchronisation von Transaktionen (Serialisierung, Scheduler)

Verteilte Datenbanken (Partitionierung, Auswirkung auf Optimierung und Synchronisation)

Transition zu NoSQL (CAP Theorem, NoSQL-DB-Typen)

Multiversion Concurrency Control, Eventually-Consistent Data Types

Verarbeitung großer Datenmengen (Hadoop, Map/Reduce, Hive, HBase)

In-Memory-Datenbanken

- A. Kemper and A. Eickler. Datenbanksysteme. Oldenbourg Verlag, 2011.
- H. Plattner. Lehrbuch In-Memory Data Management. Springer Gabler, 2013.
- T. White. Hadoop The Definitive Guide. O'Reilly, 2012.

3.3.5 Echtzeitverarbeitung von Datenströmen (Stream Processing)

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagent	eil / Kompeten:	zteil Information	Engineering	g
Modul alte PO (2013):					
Lehrveranstaltung:	Echtzeitverarbeitung von Datenströmen (Stream Processing)				
LV alte PO (2013):					
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung
1-3	1	1	Wahlpflicht	5.0	150h, davon ca 40% Kontaktstudium, ca 60% Eigenstudium

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Information Engineering, WPF (nur Master)	PrivDoz. D. Lehmann
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/PA	Vorlesung, Übung, Durchführung und Präsentation von Projekten durch Studierende	

Kompetenzziele (nach Bloom)

- Einsatzgebiete, Umfeld, Technologien und Risiken von Event-Streams kennen und analysieren
- geeignete Technologien auswählen, erste Lösungen basierend auf Event-Streams umsetzen
- Fähigkeit sich selber Technologien des Stream Processing zu erarbeiten und Technologien zu vergleichen.

Lehrinhalte

- Bedeutung, Vorkommen und Struktur von Event Streams und Sensordaten im Zuge der Digitalisierung am Beispiel typischer Anwendungsfelder, Open Data
- Übersicht Sensorik, IoT Netzwerke, Ziele der Verarbeitung
- Risiken im Bereich IT Sicherheit und Datenschutz
- Cloud-Architekturen zur Verarbeitung von Event-Streams (IoT-Cloud Services, Edge Computing, Fog Computing, etc.)
- Breite Übersicht zu Technologien zur Verarbeitung von Event-Streams durch Projekte und Vorträge in verschiedenen Anwendungsfeldern (IoT-Clouds, Complex Event Processing, Process Mining, Erlang, etc.)

Literatur

Wird in der Veranstaltung bekanntgegeben

3.3.6 Fortgeschrittene Themen der IT-Security

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagent	eil / Kompeten	zteil Information	Engineerin	g
Modul alte PO (2013):					
Lehrveranstaltung:	Fortgeschritt	ene Themen d	er IT-Security		
LV alte PO (2013):					
Semester	Dauer (Sem.) Häufigkeit (pro Jahr) Art ECTS- Studentische Arbeitsbelastung				
1-3	1	2	Wahlpflicht	5.0	150h, 50 Stunden Anwesenheitszeit und 100 Stunden für Vor- und Nachbereitung des Lehrstoffes

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
Bachelorvorlesung "Sicherheit & Betrieb von Softwaresystemen"	Schwerpunkte Software Engineering und Information Engineering, WPF (nur Master)	Prof. Sh. Gharaei
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
EA	Vorlesung (4 SWS)	

Kompetenzziele (nach Bloom)

Erwerb der grundlegenden Kenntnisse über Schwachstellen und ihre unterschiedlichen Typen. Sammeln der ersten Erfahrungen aus dem Bereich Schwachstellenanalyse.

Entwickeln der Fähigkeit zur eigenständigen Studie der aktuellen Sicherheitsangriffe aus technischer Sicht.

Ausbau der Kompetenz zur Analyse der Auswirkungen eines Sicherheitsvorfalls.

Lehrinhalte

- 1. Studie von Mechanismen (bzw. Entwurf eines Mechanismus) zum Einsatz bei der Erkennung der Schwachstellen (d.h. Stand vor einem Angriff)
- 2. Studie von Mechanismen zum Einsatz bei der Erkennung der Sicherheitsvorfälle (d.h. Stand nach einem Angriff)
- 3. Entwickeln von Anforderungen & Spezifikationen zur Bewertung der (a) Schwachstellen und (b) damit verbundenen Sicherheitsrisiken.
- 4. Aktuelle Fallstudien aus dem Bereich Sicherheitsangriffe

Literatur

Ausgewählte Kapitel aus diversen Quellen zu den jeweils vorgestellten Themen werden in der Vorlesung bekannt gegeben

3.3.7 Heuristische Suche

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten	zteil Information	Engineerin	9	
Modul alte PO (2013):	Kompetenzs	emester				
Lehrveranstaltung:	Heuristische	Heuristische Suche				
LV alte PO (2013):	Künstliche Ir	Künstliche Intelligenz				
Semester	Dauer (Sem.)					
1-3	1	1	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Information Engineering, WPF (nur Master)	Prof. K. Gutenschwager
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/EA	Vorlesung, Übungen, Fallstudien	

Kompetenzziele (nach Bloom)

Studierende

- kennen die Grenzen exakter mathematishcer Verfahren für np-schwere Probleme
- kennen die unterschiedlichen Lösungsstrategien und Verfahren
- können Probleme selbständig formulieren, und
- allgemeine Lösungsverfahren eigenständig adaptieren und implementieren

Lehrinhalte

- · Einführung in Optimierungsprobleme
- Formulierung
- Lösbarkeit
- Constraint-Satisfaction-Problem
 - Anwendungsbereiche und Problemformulierung
 - Lösungsansätze (AC-3-Algorithmus, Backtracking, Min-Conflict-Heuristik)
- Grundlegende Lösungssstrategien
- Eröffnungs- vs. Verbesserungsverfahren)
- Lokale Suche und evolutionäre Ansätze
- Meta-Heuristiken
- Tabu Search
- Simulated Annealing
- Ant Search
- Genetische Algorithmen
- Scatter Search
- Variable Neighborhood Search
- · Ausgewählte Problemstellungen und Anwendungsbeispiele

Literatur

Nach Bekanntgabe in der Lehrveranstaltung

3.3.8 Industrielle Bildverarbeitung

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagent	eil / Kompeten:	zteil Information	Engineering	9
Modul alte PO (2013):					
Lehrveranstaltung:	Industrielle E	Industrielle Bildverarbeitung			
LV alte PO (2013):					
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung
1-3	1	1	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Information Engineering, WPF (nur Master)	PrivDoz. D. Lehmann
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h	begleitende Übungsaufgaben zur eigenständigen Bearbeitung und Vertiefung der Vorlesungsinhalte	

Kompetenzziele (nach Bloom)

Spezifische Probleme und Lösungsansätze von

industriellen Bilverarbeitungsproblemen/Computer Vision Problemen charakterisieren und motivieren.

Lehrinhalte

Funktionsweise CCD

Farbräume

Fouriertranformation, Optischer Fluss,

Halbtonverfahren

Faltungsoperationen

Gradient, Mittelwertfilter(Boxfilter) Gaussian, Laplace, Co-Gradient, LoG, Edges, DoG, Hessian DoH,

Histogramm, HE, HoG

Features (Wiener, Canny, Kalman-Filter)

Connected Components

Feature Ponts (SIFT, SURF, FAST, ORB, BRIEF,...)

optische Kamerakalibrierung

Tracking (Optical Flow-based Tracking, Sparse Feature Point Tracking, Median Flow,...)

Visual Odometrie (VSLAM)

Tiefenrekonstruktion (Depth From Motion, Depth from Fokus, Phase-Shift, Time of Flight, Structure Light, Stero Vision, Structure From Motion,...)

Rückprojektion

Stiching

Objekterkennung und Objektdetektion

Segmentierung

Optical Charackter Recognition

Upscaling/Downscaling

Literatur

Wird in Veranstaltung bekannt gegeben

3.3.9 Maschinelles Lernen

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten	zteil Information	Engineering	9	
Modul alte PO (2013):	Kompetenzs	emester				
Lehrveranstaltung:	Maschinelles	Maschinelles Lernen				
LV alte PO (2013):	Data Mining					
Semester	Dauer (Sem.)					
1-3	1	1	Wahlpflicht	5.0	150h, davon ca 40% Kontaktstudium, ca 60% Eigenstudium	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Information Engineering, WPF (nur Master)	Prof. F. Klawonn
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/EA	Vorlesung und Übung, Präsentation EA-Projekt	

Kompetenzziele (nach Bloom)

Anwenden: Lehrinhalte in konkreten Beispielsituationen anwenden können (im Rahmen von Übungsaufgaben)

Analyse: Auswahl geeigneter Daten und Verfahren, Anwendung und Interpretation der Ergebnisse für Fragestellungen des maschinellen Lernens

Synthese: Durchführung eines Data Mining Projekts entsprechend dem CRISP-DM-Modell

Lehrinhalte

- CRISP-DM-Modell
- KDD-Prozess
- · Data Mining Aufgaben
- Business Understanding
- Data Understanding (Visualisierung, Ausreißererkennung, Arten fehlender Werte)
- Data Preparation (Normalisierung, Imputation, Attributselektion und -extraktion)
- Clusteranalyse (hierarchisch, k-Means und Erweiterungen, Mixture Models, DBSCAN) -

Assoziationsanalyse (einfache und komplexe Itemsets, Assoziationsregeln, Subgroup Discovery)

- Klassifikation (Random Forests, Naiv Bayes, Support Vector Machines, Nearest Neighbour)
- Regression (lineare Modelle, LASSO, neuronale Netze)
- Evaluation (Overfitting, Training-, Validierungs- und Testdaten, (geschachtelte) Kreuzvalidierung)
- Deployment
- Big Data

Literatur

M.R. Berthold, C. Borgelt, F. Höppner, F. Klawonn: Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data. Springer, London (2010)

G. James, D. Witten, T. Hastie, R. Tibshirani: An Introduction to Statistical Learning: with Applications in R. Springer, New York (2013)

3.3.10 Neuronale Netze und Deep Learning

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten	zteil Information	Engineerin	g	
Modul alte PO (2013):						
Lehrveranstaltung:	Neuronale Netze und Deep Learning					
LV alte PO (2013):						
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1-3	1	1 in 1,5 J.	Wahlpflicht	5.0	150h, davon ca. 40% Kontakt	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkte Information Engineering und Software Engineering, WPF (nur Master)	Prof. C. Meyer
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h; Bestehen der Laboraufgaben	Vorlesung und begleitende Übungsaufgaben zur eigenständigen Bearbeitung (im Team) und Vertiefung der Vorlesungsinhalte	

Kompetenzziele (nach Bloom)

Überblick über Konzepte, Algorithmen und Architekturen von neuronalen Netzwerken und Deep Learning vermitteln; Anwendungen, Möglichkeiten und Grenzen der Technologie verstehen; geeignete einfache Netzwerke auf elementare neue Probleme anwenden; Ergebnisse von Experimenten analysieren und darstellen; Möglichkeiten zur Verbesserung der Performanz kennenlernen

Lehrinhalte

- Biological basis (neuron and networks)
- Artificial neuron models
- Artificial neural networks: Architectures and the learning problem
- Feedforward neural networks, multi-layer perceptron
- Learning in neural networks and the backpropagation algorithm
- Deep Learning: Motivation and concepts
- · Convolutional neural networks
- (If time permits:) Recurrent neural networks: Long Short Term Memory (LSTM)
- (If time permits:) Unsupervised learning: Autoencoders
- (If time permits:) Generative models: Variational Autoencoder, Generative Adversarial Networks

- Ian Goodfellow et al., "Deep Learning", MIT Press, 2016
- Michael Nielsen: "Neural Networks and Deep Learning", 2017 (weitere Literatur in der Vorlesung)

3.3.11 Statistische Methoden

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	Grundlagenteil / Kompetenzteil Information Engineering				
Modul alte PO (2013):	Kompetenzs	emester				
Lehrveranstaltung:	Statistische	Statistische Methoden				
LV alte PO (2013):	Statistische I	Methoden				
Semester	Dauer (Sem.)					
1-3	1	1	Wahlpflicht	5.0	150h, davon ca 40% Kontaktstudium, ca 60% Eigenstudium	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
Grundkenntnisse Wahrscheinlichkeitsrechnung/Statistik	Schwerpunkt Information Engineering, WPF (nur Master)	Prof. F. Klawonn
Prüfungsform / Prüfungs-dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/EA	Vorlesung und Übung, Präsentation EA- Projekt	

Kompetenzziele (nach Bloom)

Anwenden: Lehrinhalte in konkreten Beispielsituationen anwenden können (im Rahmen von Übungsaufgaben)

Analyse: Erkennen, wann welche statistische Verfahren sinnvoll anzuwenden sind; Erkennen, ob statistische Verfahren korrekt angewandt und die Interpretation der Ergebnisse korrekt vorgenommen wurde; Auswertung von Beispieldaten mit Hinterfragung des experimentellen Designs

Synthese: statistische Auswertung von realen Daten, Erzeugung von simulierten Daten und deren Auswertung

Lehrinhalte

- Zufallsvariablen und charakteristische Eigenschaften
- Ausgewählte Verteilungen
- Deskriptive Statistik, explorative Datenanalyse
- Parameterschätzung (Maximum Likelihood Schätzer, Erwartungstreue, Konsistenz, Effizienz, Schätzer für Parameter gängiger Verteilungen)
- Konfidenzintervalle inklusive Bootstrapping
- Hypothesentests (t-, Wilcoxon-Mann-Whitney-, F-, Kruskal-Wallis-Test, (M)ANOVA, Korrektur für multiples Testen)
- experimentelles Design
- Multivariate Statistik (Korrelation, Kontingenztafeln, Regression, Unabhängigkeitstests)
- Ausgewählte Spezialthemen (Experimentelles Design, Bayes'sche Statistik, robuste Statistik, logistische Regression, Survival-Analyse, Zeitreihenanalyse)

Literatur

P.J. Diggle, A.G. Chetwynd: Statistics and Scientific Method: An Introduction for Students and Researchers. Oxford University Press, Oxford (2011)

3.4 Grundlagenteil / Kompetenzteil Systems and Computer Engineering

3.4.1 Automotive Systems

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	Grundlagenteil / Kompetenzteil Systems and Computer Engineering				
Modul alte PO (2013):						
Lehrveranstaltung:	Automotive	Automotive Systems				
LV alte PO (2013):						
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1-3	1	1	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
Bachelorvorlesung "Vernetzte Systeme"	Schwerpunkt Systems und Computer Engineering, WPF (nur Master)	Prof. G. Bikker
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
EA/PA/K1,5	Unterricht, Labor mit Projektvorträgen, Projektarbeit (4 SWS)	

Kompetenzziele (nach Bloom)

Studierende

- lernen die wesentlichen elektronischen Fahrzeugsysteme und deren Anwendungsbereiche kennen
- lernen die Grundlagen der Fahrerassistenzsysteme kennen
- entwerfen unter der Berücksichtigung von Funktionaler Sicherheit insb. Sicherheitsanforderungen
- simulieren selbst entwickelte Fahrerassistenzsysteme und beschäftigen sich mit virtueller Integration, Umfeld-Sensorik und Umwelt
- entwerfen Konzepte zur Datenfusion, Anwendungen wie: Umfeld-Präsentation und Car 2 X Kommunikation

Lehrinhalte

- Grundlagen der Fahrzeugsysteme und der Fahrerassistenzsysteme
- Rahmenbedingungen der Entwicklung und der Entwicklungsprozesse
- Funktionale Sicherheit (Rückverfolgbarkeit, Verifikation und Validierung)
- Virtuelle Integration und Test von FAS
- · Sensorik und Aktuatorik für FAS
- Maschinelles Sehen, Datenfusion und Umfeld-Präsentation
- Anwendungen, z.B. Car 2 X Kommunikation und Infrastruktur
- Anwendungen, z.B. Autonomes Fahren

- Konrad Reif: Fahrstabilisierungssysteme und Fahrerassistenzsysteme, Vieweg+Teubner Verlag 2010
- Markus Maurer: Autonomes Fahren, Springer Vieweg 2015
- Volker Johanning: Car IT kompakt, Springer Vieweg 2015

3.4.2 Autonomous Systems

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagenteil / Kompetenzteil Systems and Computer Engineering				
Modul alte PO (2013):	Kompetenzsemester				
Lehrveranstaltung:	Autonomous Systems				
LV alte PO (2013):	Robotik				
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung
1-3	1	1	Wahlpflicht	5.0	150h

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
Robotik im Master	Schwerpunkt Systems und Computer Engineering, WPF (nur Master)	Prof. R. Gerndt
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
EA/K1,5h/M	Vorlesung, Seminar, Labor	

Kompetenzziele (nach Bloom)

Vertiefen des Wissen über das Gebiet der Robotik, Verstehen von Zusammenhängen, insbesondere Voraussagen des Verhaltens von Systemen, Anwendung des Wissens auf neue Problemstellungen, Analyse von Problemstellungen bzgl. ihrer Lösung durch Robotik-Systeme, Synthese von einfachen Lösungen für Robotik-Anwendungen und teilweise Evaluation der Ergebnisse bezüglich Korrektheit und Qualität (z.B. Robustheit), Erwerb bzw. Ausbau der Fähigkeit zum forschenden Lernen, Erstellung von (kurzen) wissenschaftlichen Veröffentlichungen.

Lehrinhalte

- · Humanoid Roboter
- Steuerung und Regelung komplexer Bewegungsabläufe
- Entscheidungsfindung unter Unsicherheit
- Ausgewählte Themen aus dem Bereich autonomer Systeme
- Nutzung von wissenschaftlichen Veröffentlichungen zur Robotik
- Abgegrenzte Forschungsprojekte zu Teilaspekten
- Verifikation von Hypothesen durch Experimente
- Durchführung und Dokumentation von Experimenten und kleinen Forschungsprojekten.

Literatur

Diverse: z.B. S.Thrun, et. al.: ,Probabilistic Robotics'

IEEEXPLORE und ACM Online Bibliotheken (Zugriff über Hochschulbibliothek)

3.4.3 Innovative Rechnersysteme

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagenteil / Kompetenzteil Systems and Computer Engineering				
Modul alte PO (2013):					
Lehrveranstaltung:	Innovative Rechnersysteme				
LV alte PO (2013):					
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung
1-3	1	1	Wahlpflicht	5.0	150h

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Systems and Computer Engineering, WPF (nur Master)	Prof. J. Kreyssig
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
EA/K1,5h/M	Seminaristische Vorlesung, Selbstarbeitsphasen, Projektarbeit, Übungen (3+1 SWS)	

Kompetenzziele (nach Bloom)

Studierende

- verstehen Probleme und Konzepte der Beschreibung von aufgabenspezifischen Systemen
- teilen den Entwurf geeignet in Hard- und Softwareanteile auf
- entwerfen aufgabenspezifische Systeme und deren Programmierung in einer höheren Programmiersprache

Lehrinhalte

- Vor- und Nachteile von Systemen aus Standardkomponenten bzw. aufgabenspezifischen Komponenten.
- Prozessorbaukästen
- Aufgabenspezifische Komponenten
- Compiler zur Systemgenerierung
- Kopplung zwischen Systementwurf und Programmierung
- Betriebssysteme, Realzeitaspekte
- OpenCL
- Test, Kostenaspekte
- Typischen Anwendungsgebietes (z.B. Kfz; Industrie; usw.)
- Praktische Übungen zum Entwurf

Literatur

• Literatur zum Thema Systemarchitekturen wird je nach dem gewählten Anwendungsgebiet bekanntgegeben.

3.4.4 Location Based Assistance

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagenteil / Kompetenzteil Systems and Computer Engineering				
Modul alte PO (2013):					
Lehrveranstaltung:	Location Based Assistance				
LV alte PO (2013):					
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung
1-3	1	1	Wahlpflicht	5.0	150h

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
keine	Schwerpunkt Systems und Computer Engineering, WPF (nur Master)	Prof. J. Kreyssig
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
EA/K1,5h/M	Seminaristische Vorlesung, Selbstarbeitsphasen, Projektarbeit, Übungen (3+1 SWS)	

Kompetenzziele (nach Bloom)

Studierende

- kennen unterschiedliche Verfahren zur Ortsbestimmung und die sinnvollen Einsatzgebiete
- kennen und verstehen die Grundlagen der satellitengestützten Ortsbestimmung (GPS, Glonas, Galileo, ...)
- haben erste praktische Erfahrungen mit Satellitennavigationssystemen
- kennen und verstehen die Grundlagen der Nahbereichs-Technologien (u.a. RFID-Technik (Radio Frequency Identification): Blue Tooth Beacon: usw.)
- haben erste praktische Erfahrungen mit z.B. RFID-Systemen
- kennen Anwendungen, die die verschiedenen Verfahren zur Ortsbestimmung nutzen

Lehrinhalte

Einführung und Überblick

- Methoden zur Ortsbestimmung
- Satellitengestützte Ortsbestimmung
- Auswertung von Satellitentelegrammen; Korrektur von Fehlern (z.B. DGPS)
- Nahbereichstechnologien
- Kommunikation zwischen Lesegerät und Transponder (Aktiv, Passiv, Semi-Aktiv, RFID, Bluetooth-Beacon usw.)
- Vergleich der Systeme und ihrer Einsatzmöglichkeiten
- Energie und Datenübertragung; Einschränkungen; Kollisionserkennung; Reichweiten
- Beispiele von implementierten Satelliten und RFID Systemen
- Datensicherheit
- Anwendungsbeispiele (Logistik, Automobil, Luftfahrt, Robotik, Zugangskontrolle, Nahrungsmittel, Diebstahlssicherung, Materialwirtschaft, Sport, usw.)

Experimentelle Arbeit:

• praktische Erfahrung mit der Satellitennavigation und mit RFID-Systemen

- Schüttler, T.: Satellitennavigation, Springer Verlag
 Finkenzeller, K.: RFID-Handbuch: Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen Chipkarten und NFC, Carl Hanser Verlag
- Kern, C.: Anwendung von RFID-Systemen, Springer Verlag

3.4.5 Mensch-Roboter-Interaktion

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagent	eil / Kompeten	zteil Systems an	d Compute	r Engineering
Modul alte PO (2013):					
Lehrveranstaltung:	Mensch-Rob	Mensch-Roboter-Interaktion			
LV alte PO (2013):	ehemals in F	PO2018: Menso	ch-Maschine-Inte	eraktion für	Autonome Systeme
Semester	Dauer Häufigkeit Art ECTS- Studentische (Sem.) (pro Jahr) ECTS- Punkte Arbeitsbelastung				
1-3	1	1	Wahlpflicht	5.0	150h

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
Grundkenntnisse in Englisch, Grundkenntnisse Robotik oder autonome Systeme	Schwerpunkt Systems und Computer Engineering, WPF (nur Master); Digital Technologies (M. Sc.)	Prof. T. Dörnbach Prof. R. Gerndt
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
PF	Vorlesung mit Labor	

Kompetenzziele (nach Bloom)

Studierende

- haben nach Abschluss des Moduls die Prinzipien unterschiedlicher Interaktionsformen gelernt,
- kennen die wichtigsten technologischen Methoden zur Realisierung einer Mensch-Roboter-Interaktion,
- sind in der Lage, Forschungsaufgaben im Bereich Mensch-Roboter-Interaktion umzusetzen.

Lehrinhalte

- Übersicht über interagierende Systeme und Roboter
- Design in MRI
- Räumliche Interaktion
- Nonverbale Interaktion
- Verbale Interaktion
- Emotionen
- · Learning from Demonstration
- Forschungsmethoden in MRI
- · Vertiefung englischer Sprachkenntnisse

- C. Bartneck et al.: Human-Robot Interaction: An Introduction, www.human-robot-interaction.org, 2019.
- S. Krug: Don't Make Me Think, Revisited: a Common Sense Approach to Web Usability. New Riders, 2014.
- G. Hoffman, X. Zhao: A Primer for Conducting Experiments in Human-Robot Interaction. ACM Transactions on Human-Robot Interaction 10 (Oct. 2020).

3.4.6 Robotik (Robotics/Cobotics)

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagent	eil / Kompeten:	zteil Systems an	d Compute	r Engineering
Modul alte PO (2013):	Theorie der	Theorie der Informatik			
Lehrveranstaltung:	Robotik (Rob	Robotik (Robotics/Cobotics)			
LV alte PO (2013):	Systemtheor	ie			
Semester	Dauer Häufigkeit Art ECTS- Studentische (Sem.) (pro Jahr) ECTS- Punkte Arbeitsbelastung				
1-3	1	1	Wahlpflicht	5.0	150h

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO; ggf. LV-Sprache Englisch	Schwerpunkt Systems und Computer Engineering, WPF (nur Master); Digital Technologies (M. Sc.)	Prof. R. Gerndt
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
EA/K1,5h DT: PF	Vorlesung, Seminar, Labor	

Kompetenzziele (nach Bloom)

Wissen über das Gebiet der Robotik vertiefen, Verstehen von Zusammenhängen, insbesondere Voraussagen des Verhaltens von Systemen, Anwendung des Wissens auf neue Problemstellungen, Analyse von Problemstellungen bzgl. ihrer Lösung durch Robotik-Systeme und teilweise Evaluation der Ergebnisse bezüglich Korrektheit und Qualität, Erwerb bzw. Ausbau der Fähigkeit zum forschenden Lernen, Erstellung von (kurzen) wissenschaftlichen Veröffentlichungen.

Lehrinhalte

- Robotersensorik
- Signal- und Bildverarbeitung für die Robotik
- Erweiterte Kinematik und Dynamik von Robotern
- Steuerung und Regelung von Robotern
- · Lokalisierung and Kartierung
- Robot Operating System (ROS)
- Simulation von Robotern
- · Anwendung der Lehrinhalte auf reale Roboter
- Nutzung von wissenschaftlichen Veröffentlichungen zur Robotik
- Abgegrenzte Forschungsprojekte zu Teilaspekten
- Verifikation von Hypothesen durch Experimente
- Durchführung und Dokumentation von Experimenten und kleinen Forschungsprojekten

Literatur

Diverse: z.B. A Kelly: 'Mobile Robotics', R. Featherstone: ,Rigid Body Dynamics Algorithms' IEEEXPLORE und ACM Online Bibliotheken (Zugriff über Hochschulbibliothek)

3.4.7 Robuste Systeme

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten:	zteil Systems an	d Compute	r Engineering	
Modul alte PO (2013):	Kompetenzs	emester				
Lehrveranstaltung:	Robuste Sys	Robuste Systeme				
LV alte PO (2013):	Robuste Sys	Robuste Systeme				
Semester	Dauer Häufigkeit Art ECTS- Studentische Arbeitsbelastung					
1-3	1	1 1 Wahlpflicht 5.0 150h, davon 30% Kontakt-, 70% Eigenstudium				

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
keine	Schwerpunkt Systems and Computer Engineering, WPF (nur Master)	Prof. C. Fühner
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
EA/K1,5h/M	Vorlesung und Übungen (4 SWS)	

Kompetenzziele (nach Bloom)

Studierende

- analysieren, synthetisieren und bewerten Systeme
- beurteilen in der Analyse Systeme in ihren Anforderungen und Randbedingungen bezüglich der Zuverlässigkeit und Robustheit
- können die Fachbegriffe Zuverlässigkeit, Verfügbarkeit und Sicherheit zuordnen und verwenden
- entwerfen System und Software in ihrer Architektur und Umsetzung hinsichtlich definierter Kriterien der Verlässlichkeit und Sicherheit
- wenden die Kenntnisse exemplarisch auf verteilte Systeme, insb. im "Fahrzeugbereich", an

Lehrinhalte

- Definition der Technischen Zuverlässigkeit (RAMS Reliability, Availability, Maintenance, Safety) und Robustheit von Systemen.
- Anforderungsmanagement für sicherheitsgerichtete Systeme
- Kennenlernen und Einordnen von relevanten Gesetzten und Normen
- Reifegradmodelle, Qualitätsmanagement
- Entwurfsprozesse (Vorgehensmodell wie das V-Modell und Möglichkeiten der modellbasierten Entwicklung)
- Testen von robusten Systemen
- Geschichte Strukturen und deren Standardisierung (z.B. Autosar)

Literatur

Nach Bekanntgabe in der Lehrveranstaltung

3.4.8 Simulation und Verifikation

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten:	zteil Systems an	d Compute	r Engineering	
Modul alte PO (2013):						
Lehrveranstaltung:	Simulation und Verifikation					
LV alte PO (2013):						
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1-3	1	1 1 Wahlpflicht 5.0 150h, davon 30% Kontakt-, 70% Eigenstudium				

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Systems und Computer Engineering, WPF (nur Master)	Prof. G. Bikker
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
R/EA/PA/K1.5	Unterricht, Labor mit Projektvorträgen, Projektarbeit (4 SWS)	

Kompetenzziele (nach Bloom)

Studierende

- lernen Aufbau und Arbeitsweise von diskreten und kontinuierlichen Simulatoren
- entwickeln und validieren von Simulationsmodellen in verschiedenen Simulationssprachen
- lernen Anwendungsbeispiele und Einsatzmöglichkeiten kennen
- erwerben praxisorientierte Kenntnisse in den entsprechenden Simulationsprogrammen

Lehrinhalte

- Grundlagen von Simulationssystemen (analytische S., stochastische S., verteilte S., hybride S.)
- Simulationssprachen
- · Modellbildung und -bewertung
- Simulation als Methode zur Validation und Test
- Tools und Anwendungen, Closed Loop Simulation
- Animation

- Jazar, R.N.: Vehicle Dynamics: Theory and Application. New York: Springer, 2008.
- Hartmut Bossel: Modellbildung und Simulation, Springer, 1992
- Michael Glöckler: Simulation mechatronischer Systeme, Springer 2014
- Jörg Kahlert: Simulation technischer Systeme, Vieweg 2004
- Clemens Gühmann et al.: Simulation and Testing for Vehicle Technology, Springer 2016

3.4.9 Smart IoT (Internet of Things)

Studiengang: Informatik (M. Sc.)						
Modul:	Grundlagent	eil / Kompeten:	zteil Systems an	d Compute	r Engineering	
Modul alte PO (2013):						
Lehrveranstaltung:	Smart IoT (In	Smart IoT (Internet of Things)				
LV alte PO (2013):						
Semester	Dauer (Sem.)					
1-3	1	1 Wahlpflicht 5.0 150h, davon ca. 56h Kontaktstudium, ca. 94h Eigenstudium				

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
keine	Schwerpunkt Systems und Computer Engineering, WPF (nur Master); Digital Technologies (M. Sc.)	z. Zt. Prof. R. Gerndt
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
PF	Vorlesung mit Labor	

Kompetenzziele (nach Bloom)

Studierende

- haben nach Abschluss des Moduls die Grundprinzipien des Internet der Dinge / Internet of Things (IoT) gelernt,
- kennen die wichtigsten Technologien, die bei der Realisierung des IoT Anwendung finden,
- können loT-Systeme kritisch diskutieren, evaluieren und realisieren

Lehrinhalte

- Einführung in das Internet der Dinge (IoT)
- Sensorik im Internet der Dinge
- Aktuelle IoT Architekturen und deren Komponenten
- Edge, Cloud und Fog Computing
- Sicherheitsaspekte in IoT

Literatur

S. Misra, S. Sarkar, S. Chatterjee: ,Sensors, Cloud and FOG

3.4.10 Softwareintensive Systeme in der Mobilität

Studiengang: Informatik (M. Sc.)					
Modul:	Grundlagent	eil / Kompeten	zteil Systems an	d Compute	r Engineering
Modul alte PO (2013):					
Lehrveranstaltung:	Softwareintensive Systeme in der Mobilität				
LV alte PO (2013):					
Semester	Dauer Häufigkeit (Sem.) Häufigkeit (pro Jahr) Art ECTS- Studentische Arbeitsbelastung				
1-3	1	1	Wahlpflicht	5.0	150h

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Schwerpunkt Systems and Computer Engineering, WPF (nur Master)	Prof. C. Fühner
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
K1,5h/M/EA	Seminaristische Vorlesung mit Projektanteilen und Übungsaufgaben zur eigenständigen Bearbeitung und Vertiefung	

Kompetenzziele (nach Bloom)

Studierende

- wenden ihr Wissen über eingebettete und verteilte Systeme an und vertiefen dieses
- kennen besondere Herausforderungen, Lösungsansätze und Standards in der Anwendungsdomäne Mobilität
- synthetisieren auf dieser Grundlage konkrete Lösungen
- kennen aktuelle Anwendungen und zugrundeliegende Architekturen in der Mobilität und ordnen diese ein
- kennen, analysieren, vergleichen und bewerten Anforderungen und Architekturansätze
- kennen Entwicklungsprozesse und wenden diese an

Lehrinhalte

- Typische Anforderungen und Architekturen mit Schwerpunkt auf Infrastruktur und Onboard
- Karten und Infrastruktur-Beschreibung, insbesondere topologische Karten
- Herausforderungen und Standards zu Betriebssystemen, Middlewares und Kommunikationsprotokollen
- Besondere Randbedingungen im Entwicklungsprozess
- · Anwendungsbeispiele z.B. aus den Bereichen Bahnautomatisierung, Automotive und Avionik

Literatur

Aktuelle Literatur wird in der Veranstaltung bekanntgegeben

3.5 Weitere Wahlpflichtfächer – ohne Schwerpunktzuordnung

3.5.1 Entwicklung digitaler Geschäftsmodelle

Studiengang: Informatik (M. Sc.)							
Modul:	Grundlagent	Grundlagenteil / Kompetenzteil Information Engineering					
Modul alte PO (2013):							
Lehrveranstaltung:	Entwicklung	Entwicklung digitaler Geschäftsmodelle					
LV alte PO (2013):							
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
1-3	1	1 (WS)	Wahlpflicht	5.0	150h, davon ca 33% Kontaktstudium, ca 67% Projektarbeit		

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
Teilnehmerzahl begrenzt	Master Informatik, Master Digital Technologies	Prof. Dr. Wolfram Ludwig
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
Projektarbeit	Lehrvortrag, Lehrgespräch, Fallmethode, Übungen	

Kompetenzziele (nach Bloom)

- Die Studierenden kennen Grundbegriffe der Geschäftsmodellierung.
- Die Studierenden kennen und verstehen die Komponenten von Geschäftsmodellen.
- Die Studierenden kennen und verstehen Methoden zur Entwicklung von Geschäftsmodellen
- Die Studierenden können die Komponenten und Erfolgsfaktoren bestehender digitaler Geschäftsmodelle analysieren und bewerten.
- Die Studierenden können neue digitale Geschäftsmodelle für vorgegebene oder selbst gewählte Gegenstandsbereiche entwickeln.

Lehrinhalte

- 1.) Begriff des Geschäftsmodells
- 2.) Komponenten von Geschäftsmodellen
- 3.) Ansätze und Methoden zur Entwicklung von Geschäftsmodellen
- 4.) Digitale Geschäftsmodelle
- 5.) Merkmale digitaler Geschäftsmodelle
- 6.) Komponenten und Erfolgsfaktoren digitaler Geschäftsmodelle
- 7.) Ansätze und Methoden zur Entwicklung digitaler Geschäftsmodelle
- 8.) Analyse und Bewertung ausgewählter Fallstudien
- 9.) Übungen zur Entwicklung digitaler Geschäftsmodelle

- Grassmann, Oliver, Sutter Philipp (Hrsg.): Digitale Transformation gestalten. Geschäftsmodelle, Erfolgsfaktoren, Checklisten
- Meinhard, Stefan, Pflaum Alexander (Hrsg.): Digitale Geschäftsmodelle
- Osterwalder, Alexander, Pigneur, Yves: Business Model Generation

3.5.2 Programmierparadigmen C++

Studiengang: Informatik (M. Sc.)						
Modul:	Qualifikation	smodul				
Modul alte PO (2013):	Qualifikation	smodul				
Lehrveranstaltung:	Programmierparadigmen C++					
LV alte PO (2013):	Programmierparadigmen C++					
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1-3	1	jährlich Winter	Wahlpflicht	5.0	150h, davon ca. 40% Kontaktstudium (Präsens bzw. virtuell durch BBB), ca. 60% Eigenstudium	

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	alle BA und Master	Hon. Prof. H. Helmke
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
abhängig von Teilnehmerzahl	begleitende Übungsaufgaben zur eigenständigen Bearbeitung und Vertiefung der Vorlesungsinhalte, die teilweise aufeinander aufbauen,	

Kompetenzziele (nach Bloom)

- Die verschiedenen Programmierparadigmen und C++ verstehen und selbstständig anwenden können
- testbasierte Software-Entwicklung

Lehrinhalte

Einführung, Worthäufigkeiten in einer Datei zählen: Datentypen, Steueranweisungen

Funktionen und Strukturen

Include-Wächter, Header-Dateien, Werte- und Referenz-Semantik,

Zeiger, Heap- und Stackspeicher

Klassen als Abstrakte Datentypen

tiefe und flache Kopie: Kopierkonstruktor, Nutzung von LogTrace

Operatoren, Verschiebeoperatoren

Templates

Programmieren mit der STL (Standard Template Library)

Polymorphie, Intelligente Zeiger

Container

Lambda-Ausdrücke

3.5.3 Gesprächs- und Verhandlungsführung - Leitung von Arbeitsgruppen

Studiengang: Informatik (M. Sc.)								
Modul:	Grundlagent	Grundlagenteil / Kompetenzteil						
Modul alte PO (2013):	Kommunikat	Kommunikation						
Lehrveranstaltung:	Gesprächs-	Gesprächs- und Verhandlungsführung - Leitung von Arbeitsgruppen						
LV alte PO (2013):	Gesprächs-	und Verhandlu	ngsführung - Lei	itung von A	rbeitsgruppen			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung			
1-3	1		Wahlpflicht	5.0	150h			

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
keine	Master Informatik	Dr. S. Lorenz (Career Service)
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	(Career Service)
Hausarbeit	Seminar	

Kompetenzziele (nach Bloom)

Das Seminar vermittelt schrittweise Leitlinien für das Organisieren, Leiten und Führen geschäftlicher Gespräche.

Lehrinhalte

- den eigenen Kommunikationsstil kennen
- verbale und nonverbale Gesprächstechniken kennenlernen, bewusst, strukturiert und gezielt einsetzen
- Besprechungen planen, durchführen und nachbearbeiten
- Argumentationsstrategien
- Konfliktgespräche führen
- Verhandeln nach dem Harvard-Konzept
- typische Verhandlungsfehler erkennen und vermeiden

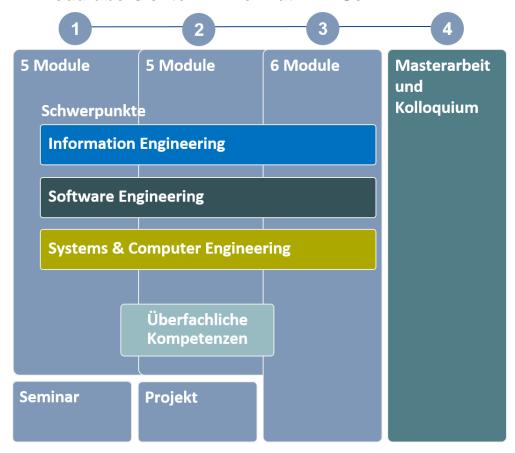
3.6 Masterarbeit mit Kolloquium

Studiengang: Informatik (M. Sc.)							
Modul:	Abschlussar	Abschlussarbeit mit Kolloquium					
Modul alte PO (2013):	Abschlussar	Abschlussarbeit					
Lehrveranstaltung:	Masterarbeit	Masterarbeit mit Kolloquium					
LV alte PO (2013):	Abschlussar	beit					
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
4	1	1	Pflicht	30.0	900h		

Voraussetzungen für die Teilnahme	Verwendbarkeit	Modulverant- wortliche(r)
gemäß PO	Master Informatik	Studiendekan
Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	
Master-Arbeit und Kolloquium	Wissenschaftliche Tätigkeit, Projektarbeit	

Kompetenzziele (nach Bloom)

- Ein komplexes praxisbezogenes oder ein forschungsorientiertes Problem aus dem Fachgebiet der Informatik bzw. des IT-Managements soll innerhalb einer vorgegebenen Frist auf der Grundlage wissenschaftlicher Methoden selbständig bearbeitet, in einer schriftlichen wissenschaftlichen Ausarbeitung dokumentiert und die Arbeitsergebnisse in einem Fachgespräch präsentiert und verteidigt werden können.
- Das erworbene Fachwissen soll in einem forschungs- oder praxisbezogenen Umfeld angewandt und selbständig um das für die Bearbeitung des Problems notwendige Anwendungs- und Spezialwissen ergänzt und vertieft werden.


Lehrinhalte

• Inhalte mit Bezug zur Informatik

Literatur

• Die Literatur wird vom Studierenden / von der Studierenden selbst zusammengestellt

4 Modulübersichten – Informatik M. Sc.

Software Engineering

- Architekturen moderner Informationssysteme
- Effiziente Algorithmen
- Entwicklung großer Anwendungssysteme
- Formale Methoden
- IT-Management
- Modellgetriebene Softwareentwicklung
- Software Engineering Projekt
- User Interfaces f
 ür Mobile Systeme
- Wissenschaftliches Rechnen
- Datenbanktechnologien
- Fortgeschrittene Themen der IT-Security
- Neuronale Netze und Deep Learning

Information Engineering

- Angewandte Kryptografie
- Automatische Sprachverarbeitung
- Big Data
- Datenbanktechnologien
- Echtzeitverarbeitung von Datenströmen
- Fortgeschrittene Themen der IT-Security
- Heuristische Suche
- Industrielle Bildverarbeitung
- Maschinelles Lernen
- Neuronale Netze und Deep Learning
- Statistische Methoden

Systems & Computer Engineering

- Automotive Systems
- Autonomous Systems
- Innovative Rechnersysteme
- Location based Assistance
- Mensch-Roboter-Interaktion
- Robotik
- Robuste Systeme
- Simulation und Verifikation
- Smart IoT (Internet of Things/Threats)
- Softwareintensive Systeme in der Mobilität

Ohne Zuordnung

- Entwicklung digitaler Geschäftsmodelle
- Programmierparadigmen C++
- Gesprächs- und Verhandlungsführung / -techniker

Insgesamt müssen 16 Module bestanden werden (ggf. auch überfachliche). Bis zu zwei Schwerpunkte können nach Antrag auf dem Zeugnis ausgewiesen werden, wenn jeweils mindestens sieben zugeordnete Module bestanden wurden.

5 Modulübersichtstabelle

Informatik (M. Sc.)

Module und zugehörige Lehrveranstaltungen	Semester	Prüfungs- leistungen, -formen (siehe Legende)	Ggf. Studien- leistungen	Studentische Arbeits- belastung (in Zeitstunden)	ECTS / CP	Modul- beauftragte
Grundlagenteil	ı					_
Seminar (Master)	1	R	gemäß PO	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium	5.0	Studien- dekan
Projekt	2	PA	gemäß PO	150h, davon 30% Kontakt und 70% Eigenstudium	5.0	Studien- dekan
Grundlagenteil / Kompe						
Angewandte Kryptographie	1-3	K1,5h/EA	gemäß PO	150h, davon 40% Kontaktstudium, ca. 60% Eigenstudium	5.0	Prof. I. Schiering
Automatische Sprachverarbeitung	1-3	K1,5h	gemäß PO	150h, davon ca. 40% Kontakt	5.0	Prof. C. Meyer
Big Data	1-3	K1,5h/PA	gemäß PO	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	5.0	Prof. F. Höppner
Datenbanktechnolo- gien	1-3	K1,5h	gemäß PO	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	5.0	Prof. F. Höppner
Echtzeitverarbeitung von Datenströmen (Stream Processing)	1-3	K1,5h/PA	gemäß PO	150h, davon ca 40% Kontaktstudium, ca 60% Eigenstudium	5.0	Prof. D. J. Lehmann
Fortgeschrittene Themen der IT- Security	1-3	EA	Bachelor- vorlesung "Sicherheit & Betrieb von Software- systemen"	150h, 50 Stunden Anwesenheitszeit und 100 Stunden für Vor- und Nachbereitung des Lehrstoffes	5.0	Prof. Sh. Gharaei
Heuristische Suche	1-3	K1,5h/EA	gemäß PO	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	5.0	Prof. K. Guten- schwager
Industrielle Bildverarbeitung	1-3	K1,5h	gemäß PO	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	5.0	Prof. D. J. Lehmann
Maschinelles Lernen	1-3	K1,5h/EA	gemäß PO	150h, davon ca 40% Kontaktstudium, ca 60% Eigenstudium	5.0	Prof. F. Klawonn
Neuronale Netze und Deep Learning	1-3	K1,5h; Bestehen der Laborauf- gaben	gemäß PO	150h, davon ca. 40% Kontakt	5.0	Prof. C. Meyer
Statistische Methoden	1-3	K1,5h/EA	Grund- kenntnisse Wahrschein- lichkeits- rechnung/ Statistik	150h, davon ca 40% Kontaktstudium, ca 60% Eigenstudium	5.0	Prof. F. Klawonn
Grundlagenteil / Kompe	tenztei	l Software End	jineering			
Architekturen moderner Informationssysteme	1-3	K1,5h	gemäß PO	150h	5.0	Prof. B. Müller
,		ı	1	I.	1	1

Module und		Prüfungs-	Ggf. Studien-	Studentische Arbeits-		Modul-
zugehörige	Ē	leistungen,	leistungen	belastung (in Zeitstunden)	CP	beauftragte
Lehrveranstaltungen	este	-formen		,	_	
	Semester	(siehe			ECTS,	
Tf:-:		Legende)		450b days a 400/	Ш	Duraf
Effiziente Algorithmen	1-3	K1,5h/M/ PA	gemäß PO	150h, davon ca. 40% Kontaktstudium, ca. 60%	5.0	Prof. J. Weimar
		FA		Eigenstudium		J. Weililai
Entwicklung großer	1-3	K1,5h	gemäß PO	150h (ca. 40% Kontakt-,	5.0	Prof.
Anwendungssysteme		, -		60% Èigenstudium)		B. Müller
Formale Methoden	1-3	K1,5h/PA:		150h, davon ca. 40%	5.0	Prof.
		50%/50%		Kontaktstudium, ca. 60%		M. Huhn
IT Managament	1-3	K1,5h/PA	gemäß PO	Eigenstudium 150h, davon ca. 40%	5.0	Prof.
IT-Management	1-3	K1,511/PA	gerriais PO	Kontaktstudium, ca. 60%	5.0	H. Grönniger
				Eigenstudium		The Gronninger
Modellgetriebene	1-3	EA/K1,5h/	gemäß PO	150h, davon ca. 40%	5.0	Prof.
Software-Entwicklung		M		Kontaktstudium, ca. 60%		M. Huhn
				Eigenstudium		1
Software Engineering	1-3	PA	gemäß PO	150h (ca. 10% Kontakt-,	5.0	Prof.
Projekt (Master) User Interfaces für	1-3	K1,5h/M/	gemäß PO	90% Entwicklungsarbeit) 150h, davon ca. 40%	5.0	B. Müller Prof.
Mobile Systeme	1-3	PA	geniais FO	Kontaktstudium, ca. 60%	3.0	J. Weimar
mobile dyelenie				Eigenstudium		o. Womian
Wissenschaftliches	1-3	K1,5h/M/P	gemäß PO	davon ca. 40%	5.0	Prof.
Rechnen		Α		Kontaktstudium, ca. 60%		P. Riegler
5 () ()	4.0	144.51	"0.50	Eigenstudium		-
Datenbanktechnolo-	1-3	K1,5h	gemäß PO	150h, davon ca. 40%	5.0	Prof.
gien				Kontaktstudium, ca. 60% Eigenstudium		F. Höppner
Fortgeschrittene	1-3	EA	Bachelor-	150h, 50 Stunden	5.0	Prof.
Themen der IT-			vorlesung	Anwesenheitszeit und 100		Sh. Gharaei
Security			"Sicherheit &	Stunden für Vor- und		
			Betrieb von	Nachbereitung des		
			Software-	Lehrstoffes		
Neuronale Netze und	1-3	K1,5h;	systemen" gemäß PO	150h, davon ca. 40%	5.0	Prof.
Deep Learning	1-3	Bestehen	geniais i o	Kontakt	0.0	C. Meyer
		der				,
		Laborauf-				
		gaben				
Grundlagenteil / Kompe					5.0	Drof
Automotive Systems	1-3	EA/PA/ K1,5	Bachelor- vorlesung	150h, davon ca. 40% Kontaktstudium, ca. 60%	5.0	Prof. G. Bikker
		171,0	"Vernetzte	Eigenstudium		C. DIKKOI
			Systeme"			<u> </u>
Autonomous Systems	1-3	EA/K1,5h/	Robotik im	150h	5.0	Prof.
In a constitution	4.0	M	Master	4501-	F 0	R. Gerndt
Innovative	1-3	EA/K1,5h/ M	gemäß PO	150h	5.0	Prof. J. Kreyssig
Rechnersysteme Location Based	1-3	EA/K1,5h/	keine	150h	5.0	Prof.
Assistance	'	M		.50	0.0	J. Kreyssig
Mensch-Roboter-	1-3	PF	Grundkennt-	150h	5.0	Profs
Interaktion			nisse			T. Dörnbach,
			Englisch,			R. Gerndt
			Grundkennt- nisse Robotik			
			oder			
			autonome			
			Systeme			
Robotik	1-3	EA/K1,5h	gemäß PO;	150h	5.0	Prof.
(Robotics/Cobotics)		DT: PF	ggf. LV-			R. Gerndt
			Sprache			

Module und zugehörige Lehrveranstaltungen	Semester	Prüfungs- leistungen, -formen (siehe Legende)	Ggf. Studien- leistungen	Studentische Arbeits- belastung (in Zeitstunden)	ECTS / CP	Modul- beauftragte
			Englisch			
Robuste Systeme	1-3	EA/K1,5h/ M	keine	150h, davon 30% Kontakt-, 70% Eigenstudium	5.0	Prof. C. Fühner
Simulation und Verifikation	1-3	R/EA/PA/K 1.5	gemäß PO	150h, davon 30% Kontakt-, 70% Eigenstudium	5.0	Prof. G. Bikker
Smart IoT (Internet of Things)	1-3	PF	keine	150h, davon ca. 56h Kontaktstudium, ca. 94h Eigenstudium	5.0	z. Zt. Prof. R. Gerndt
Softwareintensive Systeme in der Mobilität	1-3	K1,5h/M/E A	gemäß PO	150h	5.0	Prof. C. Fühner
Grundlagenteil / Kompe	tenztei	l ohne Zuordni	ung			
Entwicklung digitaler Geschäftsmodelle	1-3	Projekt- arbeit	Teilnehmer- zahl begrenzt	150h, davon ca 33% Kontaktstudium, ca 67% Projektarbeit	5.0	Prof. W. Ludwig
Programmier- paradigmen C++	1-3	abhängig von Teilnehmer zahl	gemäß PO	150h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium	5.0	Hon. Prof. H. Helmke
Gesprächs- und Verhandlungsführung - Leitung von Arbeits- gruppen	1-3	Hausarbeit	keine	150h	5.0	Dr. S. Lorenz (Career Service)
Abschlussarbeit mit Kol						
Masterarbeit mit Kolloquium	4	Master- Arbeit und Kolloquium	gemäß PO	900h	30.0	Studien- dekan

6 Zuordnung Module zu den Schwerpunkten

Zuordnung Module (PO2018) Informatik M. Sc. zu den Schwerpunkten

Stand:

22.02.2023

Änderungen vorbehalten

		hwerpunl	ct	angeboten in PO2018 (N	IHB) aktu	aktuell
Name des WPF-Moduls (nach Schwerpunkten)	SE	IE,	SY	1. Vorl. bis	in Mi	ΙНВ
Software Engineering						
Architekturen moderner Informationssysteme	Х			SS 2019	ja	1
Effiziente Algorithmen	Х			SS 2019	ja	1
Entwicklung großer Anwendungssysteme	Х			WS2019/20	ja	1
Formale Methoden	, X			SS 2022	ja	i
IT-Management (IT-Projekte und Services im Enterprise-Umfeld)	х			WS 2021/22	ja	4
Modellgetriebene Softwareentwicklung	X			SS 2020	ja	
Software Engineering Projekt (Master)	X			WS 2018/19	ja	
User Interfaces für Mobile Systeme	X			WS2019/20	ja	
Wissenschaftliches Rechnen	X			SS 2019	ja	
Information Engineering					1	
Angewandte Kryptografie		х		WS 2018/19	ja	1
Automatische Sprachverarbeitung		Х		WS 2020/21	ja	
Big Data		Х		WS 2020/21	ja	
Datenbanktechnologien	Х	Х		WS 2018/19	ja	1
Echtzeitverarbeitung von Datenströmen (Stream Processing)		Х		WS 2019 /20	ja	1
Fortgeschrittene Themen der IT-Security	Х	Х		SS 2019	ja	1
Heuristische Suche		Х		SS 2019	ja	1
Industrielle Bildverarbeitung		Х		WS 2020/21	ja	1
Maschinelles Lernen		X		WS 2018/19	ja	
Neurale Netze und Deep Learning	Х	Х		SS 2021	ja	ľ
Statistische Methoden		X		SS 2019	ja	1
Systems & Computer Engineering						
Automotive Systems			х	WS 2018/19	ja	
Autonomous Systems			X	SS 2019	ja	ı
Innovative Rechnersysteme			X ·	SS 2019	ja	ı
Location Based Assistance			Х	SS 2019	ja	ı
Mensch-Roboter-Interaktion (MMI für autonome Systeme)			х	SS 2022	ja	ı
Robotik			X	WS 2018/19	ja	
Robuste Systeme			X	WS 2018/19	ja	I
Simulation und Verifikation			х	SS 2019	ja	
Smart IoT (Internet of Things/Threats)			х		ja	ı
Softwareintensive Systeme in der Mobilität			х	SS 2020	ja	
Ohne Zuordnung						
Entwicklung digitaler Geschäftsmodelle				SS 2023	ja	-
Gesprächs- und Verhandlungsführung - Leitung von Arbeitsgruppen				WS 2018/19	ja	
Programmiersprachen (-paradigmen) C++				WS 2020/21	ja	

Ehemalige Zuordnung:	Schwerpunkt			angeboten in	aktuell	
Name des WPF-Moduls	SE	IE	SY	1. Vorl.	bis	in MHB
Gesprächs- und Verhandlungsführung - Leitung von						
Arbeitsgruppen	(x)	(x)	(x)	WS 2018/19	WS 2020/21	ja
Programmiersprachen (-paradigmen) C++	(x)	(x)	(x)	WS 2020/21	WS 2020/21	ja
Automatische Sprachverarbeitung	(x)		(x)	WS 2020/21	WS 2020/21	ja
Industrielle Bildverarbeitung	(x)			WS 2020/21	WS 2020/21	ja
Industrielle Bildverarbeitung		(x)	(x)	SS 2023	SS 2023	ja
Entwicklung digitaler Geschäftsmodelle		(x)		WS 2021/22	WS 2022/23	ja

⁽x) = alte Zuordnung (im Anfangssemester(n)), d.h. jetzt nicht mehr gültig

Module, die im Master nicht mehr angeboten werden:					
AUTOSAR (PO13)		Х.	PO13	PO13	alt
Bildverarbeitung (PO13)		 х	PO13	PO13	alt
Computer Vision (Gastprofessor Baltes)		х	WS 2022/23	WS 2022/23	einzeln
Humanoide Roboter (Gastprofessor Baltes)		х	WS 2022/23	WS 2022/23	einzeln
Scaled Agile and Continuous Delivery	х		?		
Umweltinformatik (PO13)	X		PO13	PO13	alt
Verteilte Echtzeitsysteme		х	WS 2018/19	WS 2021/22	alt
Virtualisierung		х	SS 2019	WS 2019/20	alt

7 Dokumenthistorie

24.09.2018	Ersterstellung
28.09.2018	Einfügen "Weitere Wahlpflichtfächer" sowie Basiseintrag für "Gesprächs- und Verhandlungsführung - Leitung von Arbeitsgruppen"
04.03.2019	Einfügen Modulübersichtstabelle, Aktualisierung Grafik "3 Schwerpunkte", Entfernen "Umweltinformatik"
16.09.2019	Einfügen "Stream Processing": Modulbeschreibung, Modulübersichtstabelle, Grafik
28.02.2020	Einfügen "Softwareintensive Systeme in der Mobilität": Modulbeschreibung, Modulübersichtstabelle, Grafik
22.09.2020	Einfügen "Automatische Sprachverarbeitung" und "Industrielle Bildverarbeitung" inkl. Aufnahme in Modulübersichttabelle, Austausch der Grafiken (neue Farben, mehr Fächer)
04.03.2021	Umbenennung "Stream Processing" in "Echtzeitverarbeitung von Datenströmen", Wegfall "Scaled Agile and Continuous Delivery", Aktualisierung "Robotik", Aufnahme "Neuronale Netze und Deep Learning", "MMI für autonome Systeme", "Smart IoT", Einfügen Modulzuordnungstabelle
21.02.2022	Präzisierung Semesterzuordnung, Festlegung Prüfungsleistung "Automatische Sprachverarbeitung", Umbenennung "IT-Projekte und Services im Enterprise-Umfeld" in "IT-Management", Aufnahme der drei Modulbeschreibungen "Entwicklung digitaler Geschäftsmodelle", "Formale Methoden", "IT-Management", Aktualisierung Modulübersichtstabelle, Grafik Modulübersichten und Modulzuordnungstabelle, Änderung Modulverantwortung "Seminar (Master)"
22.02.2023	Umbenennung "Mensch-Maschine-Interaktion für Autonome Systeme" in "Mensch-Roboter-Interaktion", Aktualisierung "Entwicklung großer Anwendungssysteme", Entfernung "Verteilte Echtzeitsysteme", Änderung der Zuordnung "Entwicklung digitaler Geschäftsmodelle", Aktualisieren der Grafik Modulübersichten, der Modulübersichtstabelle und der Zuordnung der Module zu den Schwerpunkten