

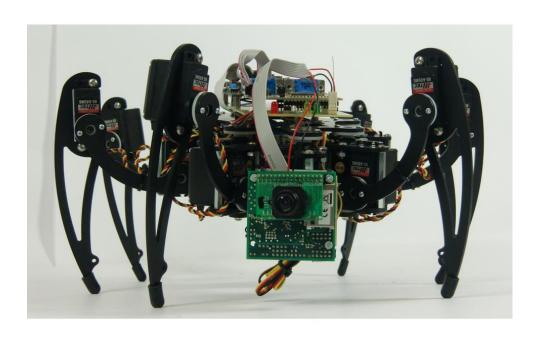
Wolfenbüttel

Hochschule Braunschweig / Wolfenbüttel

Fakultät Informatik

Prof. Dr.-Ing. Nils Jensen

Modulhandbuch für den Studiengang Informatik (M. Sc.) Dies ist eine veraltete Version. Die aktuellen Modulhandbücher finden Studien Studien Modulhandbücher finden Studien Modulhandbücher finden Studien S


Dies ist eine veraltete Version.

Die aktuellen Modulhandbücher finden Sie unter:

www.ostfalia.de/i/mhb

Endfassung mit Layout, 30.08.2013; Korrektur vom 27.04.2015

Dekanat

Inhalt

1	Allgemeine Hinweise	4
1.1	How to read this book, special language arrangements	4
1.2	Leseanleitung und sprachliche Spezialangebote	4
1.3	Übersicht der Modulabkürzungen	4
1.4	Hinweise zu Formularfeldern und Modulprüfungen	5
1.5	Hinweise zu Vertiefungsrichtung und Kompetenzsemester	5
1.6	Hinweise zu Wahlpflichtfächern	5
1.7	Weitere Informationen	5
2	Modulbeschreibungen	7
2.1	Verteilte Systeme	7
2.2	Systemtheorie	8
2.3	Informationstheorie	9
2.4	Real-Time Systems	10
2.5	[MOBSYE]: Bildverarbeitung	11
2.6	[MOBSYE]: Robuste Systeme	12
2.7	[MIE]: Datenbanktechnologie und Data Warehouse	13
2.8	[MIE]: Data Mining	14
2.9	Entwicklung komplexer Softwaresyteme	15
2.10	Numerische Algorithmen	16
2.11	Komplexität und Berechenbarkeit	17
2.13	Systembeschreibung	18
2.14	[MOBSYE]: Robotik	19
2.15	[MIE] oder [MOBSYE]: Künstliche Intelligenz	20
2.16	[MIE]: Statistische Methoden	22
2.17	Software-Engineering-Projekt	23
2.18	Gesprächs- und Verhandlungsführung – Leitung von Arbeitsgruppem	24
2.19	Wahlpflichtfach 1+2	25
2.20	System-Engineering-Projekt	27
2.21	Tutorium	28

2.22 Abschlussarbeit (Masterarbeit)

1 Allgemeine Hinweise

1.1 How to read this book, special language arrangements

This handbook specifies for major Computer Science (M. Sc.) the content of each learning module. In addition, prerequisites for participation in a class and test forms are described. In the following chapters classes are sorted by modules, semester and major.

In which semester the class is offered depends on the students starting time – winter (WiSe) or summer (SoSe), because all classes only take place once a year.

Each module is generally available in German. Deviations will be announced seperately. On request, most lecturers give additional material in English and can arrange exams in English. Please contact your lecturer for information and special arrangements.

1.2 Leseanleitung und sprachliche Spezialangebote

Dieses Modulhandbuch beschreibt für den Studiengang Informatik (M. Sc.), welche Inhalte in den Lehrveranstaltungen vermittelt werden. Weiterhin sind die Vorbedingungen zur Belegung der Lehrveranstaltung und die Prüfungsform benannt. Die Lehrveranstaltungen sind in den einzelnen Kapiteln nach den Modulen, semesterweise und nach Studiengang sortiert.

Bei der Angabe, in welchem Semester die Veranstaltung stattfindet wird unterschieden, ob der Beginn des Studiums im Wintersemester (WiSe) oder Sommersemester (SoSe) erfolgte, da die Veranstaltungen nur einmal jährlich angeboten werden.

Jedes Modul wird auf Deutsch angeboten. Bei Bedarf stellen DozentInnen zusätzliches Material auf Englisch zur Verfügung. Prüfungen auf Englisch sind grundsätzlich möglich. Bitte kontaktieren Sie hierzu Ihre DozentInnen.

1.3 Übersicht der Modulabkürzungen

Studiengang	Modulname	Kürzel
Master Informatik	Theorie der Informatik	[THEOR]
Master Informatik	Theorie der Informatik 2	[THEOR2]
Master Informatik	Kommunikation	[KOMMUN]
Master Informatik	Software-Engineering	[MSOE]
Master Informatik	System-Engineering	[MSYE]
Master Informatik	Kompetenz-/Mobilitätssemester: Vertiefung Information Engineering [MIE]	[MKOMO]
Master Informatik	Kompetenz-/Mobilitätssemester: Vertiefung Mobile System Engineering [MOBSYE]	[MKOMO]
Master Informatik	Wahlpflichtfach	[MKOMO]
Master Informatik	Abschlussarbeit	[ABM]

1.4 Hinweise zu Formularfeldern und Modulprüfungen

ECTS = "European Credit Transfer and Accumulation System". Das ECTS ermöglicht Studierenden die einfache Anerkennung von im In- und Ausland erbrachten Studienleistungen. Dabei werden jedem Modul eine bestimmte Anzahl an Leistungspunkten zugeordnet, die dann bei erfolgreichem Abschluss einer Veranstaltung angerechnet werden.

Die studentische Arbeitsbelastung wird als Mittelwert aufgeführt. Der erforderliche Auswand setzt sich aus der Kontaktzeit (= Veranstaltung) und dem Eigenanteil zusammen. Pro Lehrveranstaltung müssen ca. sechs Stunden für Anwesenheit sowie Vor- und Nachbereitung gerechnet werden.

Die DozentInnen geben die angewendete Prüfungsform und die Lehrformen zu Anfang jedes Semesters in der Lehrveranstaltung bekannt. Mündliche Prüfungen dauern 15-30 Minuten. Eine besondere Prüfungsform stellen die Modulprüfungen dar. Wenn in den Lehrveranstaltungen desselben Moduls die "Modulprüfung" angewendet wird, dann werden die Inhalte aller Lehrveranstaltungen dieses Moduls gleichzeitig in einer gemeinsamen Prüfung abgefragt.

SWS = Semesterwochenstunden; 2 SWS entsprechen 90 Minuten.

1.5 Hinweise zu Vertiefungsrichtung und Kompetenzsemester

Die Vertiefungsrichtung legt den Schwerpunkt im Masterstudiengang Informatik an der Ostfalia Hochschule Braunschweig/Wolfenbüttel fest:

- [MIE] = Information Engineering
- [MOBSYE] = Mobile System Engineering

Je nach Interesse können ab dem 1. Semester Vorlesungen in einer dieser Vertiefungen belegt werden. Bei der Zusammenstellung des individuellen Stundenplans der Studierenden müssen immer auch die aktuellen Hinweise beachtet werden, die auf den Internetseiten der Fakultät bekanntgegeben werden.

Alternativ kann das 3. Semester – das Kompetenzsemester - auch im Ausland absolviert werden. Nähere Informationen dazu werden im Internet bereitgestellt unter: www.ostfalia.de/i/international.

1.6 Hinweise zu Wahlpflichtfächern

Wahlpflichtfächer werden jedes Semester gesondert online auf den Seiten der Fakultät bekannt gegeben. Neben einem individuellen Angebot an Wahlpflichtfächern können auch Pflichtfächer aus den einzelnen Vertiefungsrichtungen oder eines anderen Studienganges als Wahlpflichtfach anerkannt werden.

Es kann nicht garantiert werden, dass ein bestimmtes Wahlpflichtfach regelmäßig angeboten wird. Dies hängt von der Nachfrage und auch den Lehrressourcen der Fakultät ab. Fragen zur Anerkennung werden in der Sprechstunde des Prüfungsausschusses beantwortet.

1.7 Weitere Informationen

Weitere Informationen zum Studiengang Informatik (M. Sc.) stehen in der Prüfungsordnung sowie im Dokument "Rahmenbedingungen für die Studiengänge".

In der Prüfungsordnung ist das Studium grundlegend geregelt. Sie enthält insbesondere das Curriculum, die Prüfungsformen und die Wiederholungsmöglichkeiten. Bei Widersprüchen zwischen Modulhandbuch und Prüfungsordnung gilt die Prüfungsordnung.

In "Rahmenbedingungen für die Studiengänge" werden für alle Präsenz-Studiengänge der Fakultät Informatik die grundlegenden organisatorischen Abläufe beschrieben.

2 Modulbeschreibungen

2.1 Verteilte Systeme

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[MSOE]		Lehrveranstaltung	Verteilte Systeme			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
1 (WiSe) / 2 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Teilprüfung: Experimentelle Arbeit als Teilleistung und Klausur 1,5h oder mündl. Prüfung	Vorlesung, Übungen, Tutorium: aktives Erarbeiten von Teil- themen Laborprojekt (3+1 SWS)	B. Müller

Kompetenzziele

Studierende

- analysieren und entwickeln Vernetzte und Verteilte Systeme in praktischen Anwendungen
- analysieren Probleme Verteilter Systeme, ordnen sie ein und treffen Architekturentscheidungen

Lehrinhalte

- Einleitung und Grundlagen: Systemmodelle, Prozessoren, Netzwerke
- Netzwerke, ausgewählte Architekturen
- Middleware, verteilte Objekte, RPC, RMI, CORBA
- Verteilte Algorithmen, Koordination und Übereinstimmung, Zeit und globale Zustände, Transaktionen und Nebenläufigkeit
- System-Infrastruktur, Betriebssysteme, Cluster
- Sicherheitsaspekte
- Vorgehensmodelle zur Analyse und Entwicklung verteilter Systeme, Modellierung von Architekturen
- Ausgewählte Themen und Anwendungsbeispiele, aktuelle Entwicklungstechnolgien

- Coulouris, G. Dollimore, Jean; Kindberg, Tim. Distributed Systems: Concepts and Design, 5. Auflage. Addison-Wesley, 2011.
- Allamaraju, Subbu. RESTful Web Services Cookbook. O'Reilly, 2010.
- Dunkel et al. Systemarchitekturen für verteilte Anwendungen. Hanser, 2008.
- Oechsel, Rainer. Parallele und verteilte Anwendungen in Java, 3. Auflage. Hanser, 2011.

2.2 Systemtheorie

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)						
Modul	[THEOR2]		Lehrveranstaltung	Systemtheorie		
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1 (WiSe) / 2 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium	

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Modulprüfung: Klausur 3h oder mündl. Prüfung	Seminaristische Vorlesung, Selbstarbeitsphasen, Projektarbeit, Übungen (3+1 SWS)	P. Riegler

Kompetenzziele

• Studierende können komplexe, vernetzte, dynamische Systeme in diversen Anwendungsgebieten analysieren und modellieren

Lehrinhalte

- Graphen zur Beschreibung von komplexen Netzwerken: Zykel, starker und schwacher Zusammenhang, Partitionierung von Graphen, balancierte Graphen,
- Spieltheorie zur Analyse von Netzwerken, die aus autonomen Komponenten bestehen, klassische Beispiele der Spieltheorie, z.B. Gefangenendilemma, Gewinn-Strategien,
- Untersuchung von vernetzten, dynamischen Systemen in diversen Anwendungsgebieten, z.B.: Netzwerke verteilter Systeme, World Wide Web, Soziale Netzwerke, Auktionen, Wahlen, Ausbreitung von Krankheiten, etc.
- Komplexe technische Systeme modellieren und validieren

Literatur

 Easley, Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.

2.3 Informationstheorie

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)						
Modul	[THEOR2]		Lehrveranstaltung	Informati	onstheorie	
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1 (WiSe) / 2 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium	

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Modulprüfung: Klausur 3h oder mündl. Prüfung	Vorlesung, Selbstarbeitsphasen, Übungen (3+1 SWS)	P. Riegler

Kompetenzziele

Nach Teilnahme an der Veranstaltung sollen die Teilnehmer

- die unterschiedlichen Vorgehensweisen und Probleme im Zusammenhang mit Übertragung von Information verstanden haben.
- in der Lage sein, die gängigen Verfahren im Zusammenhang mit Codierung und Kryptographie anzuwenden, und zukünftige Entwicklungen auf diesen Gebieten beurteilen können.

Lehrinhalte

- Grundbegriffe der Informationstheorie
- Mathematisches Grundwissen zu Codierung und Kryptographie
- Fehlerkorrigierende Codes (Lineare Codes, LDPC-Codes, Zyklische Codes)
- Symmetrische Verschlüsselungsverfahren (DES, AES)
- Public-Key-Verfahren
- Hash-Funktionen in der Kryptographie
- Algorithmen zur Berechnung von Diskreten Logarithmen, Primzahltests
- Kryptographie mit Elliptischen Kurven

- Willems, W. Codierungstheorie und Kryptographie, Birkhäuser, 2008
- McEliece, R.J. The Theory of Information and Coding, Student edition. Cambridge University Press, 2004.
- Talbot, J.; Welsh, D. Complexity and Cryptography, Cambride University Press, 2006.

2.4 Real-Time Systems

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)						
Modul	[MSYE]		Lehrveranstaltung	Real-Time Systems		
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1 (WiSe) / 2 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium	

Voraus- setzungen für die Teilnahme	barkeit dauer (Voraussetzung für die		Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Teilprüfung: Beson- Experimentelle Arbeit als derheiten Teilleistung und Klausur 1,5h oder mündl. Prüfung		Seminaristische Vorlesung, und kleine Übungen (3+1 SWS)	J. Kreyßig

Kompetenzziele

- Bestimmung aller Einflussparamter auf Systemverhalten und Zeitverhalten
- Entwurf einer Systemarchitektur und Struturierung für Echtzeitsysteme
- Realisierung echtzeitfähiger Softwaresysteme

Lehrinhalte

- Anforderungsanalyse von Echtzeitsystemen
- spezielle Rechnerstrukturen
- Scheduling und Priorisierung
- Prozesssynchronisation und Intertaskkommunikation
- spezielle Programmtechniken für Multitasking und –processing, Betriebssysteme
- statistische Betrachtungen des Zeitverhaltens / Auslastung

- Williams, Rob. Real-Time Systems Development. Butterworth-Heinemann, 2005.
- Wörn, Heinz; Brinkschulte, Üwe. Echtzeitsysteme: Grundlagen, Funktionsweisen, Anwendungen. Springer, 2009.

2.5 [MOBSYE]: Bildverarbeitung

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)						
Modul	[MKOMO]		Lehrveranstaltung	Bildverarbeitung		
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1 (WiSe) / 2 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium	

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	eine Kompetenz- semester Experimentelle [MOBSYE] Teilleistung un oder mündl. P		Vorlesung und Übungen (4 SWS)	G. Bikker

Kompetenzziele

Studierende

- kennen Bildverarbeitungsverfahren und deren Vor- und Nachteile
- setzen die Verfahren in Software ein

Lehrinhalte

- Grundbegriffe (Filter, Faltungsmatrizen, FFT, DCT, Wavelets)
- Sensoren, Performance
- 2-D- und 3-D-geeignete Verfahren zur Bildverbesserung
- Bewegung
- Verfahren in der Bilderkennung
 - a. Segmentierung
 - b. Kantendetektion, Edge Graph
 - c. Neuronale Netze
 - d. Motion detection, estimation und compensation
- Testen
- Programmierumgebungen
- Fallbeispiele, u.a. Robot Vision

Literatur

2.6 [MOBSYE]: Robuste Systeme

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)						
Modul	[MKOMO]		Lehrveranstaltung	Robuste Systeme		
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1 (WiSe) / 2 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium	

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Kompetenz- semester [MOBSYE]	Teilprüfung: Experimentelle Arbeit als Teilleistung und Klausur 1,5h oder mündl. Prüfung	Vorlesung und Übungen (4 SWS)	G. Bikker

Kompetenzziele

Studierende

- analysieren, synthetisieren und bewerten Systeme
- beurteilen in der Analyse Systeme in ihren Anforderungen und Randbedingungen bezüglich der Zuverlässigkeit und Robustheit
- können die Fachbegriffe Zuverlässigkeit, Verfügbarkeit und Sicherheit zuordnen und verwenden
- entwerfen System und Software in ihrer Architektur und Umsetzung hinsichtlich definierter Kriterien der Verlässlichkeit und Sicherheit
- wenden die Kenntnisse exemplarisch auf verteilte Systeme, insb. im "Fahrzeugbereich", an

Lehrinhalte

- Definition der Technischen Zuverlässigkeit (RAMS Reliability, Availability, Maintenance, Safety) und Robustheit von Systemen.
- Anforderungsmanagement f
 ür sicherheitsgerichtete Systeme
- Kennenlernen und Einordnen von relevanten Gesetzten und Normen
- Reifegradmodelle, Qualitätsmanagement
- Entwurfsprozesse (Vorgehensmodell wie das V-Modell und Möglichkeiten der modellbasierten Entwicklung)
- Testen von robusten Systemen
- Geschichte Strukturen und deren Standardisierung (z.B. Autosar)

Literatur

2.7 [MIE]: Datenbanktechnologie und Data Warehouse

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[MKOMO]		Lehrveranstaltung	Datenbanktechnologie und Data Warehouse			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
1 (WiSe) / 2 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Kompetenz- semester [MIE]	Teilprüfung: Experimentelle Arbeit als Teilleistung und Klausur 1,5h oder mündl. Prüfung	Vorlesung und Übungen (4 SWS)	F. Klawonn

Kompetenzziele

Studierende

- analysieren, planen, entwickeln und testen Datenbanken in komplexen IT-Projekten
- wählen und bewerten geeignete IT-Infrastrukturen

Lehrinhalte

- Wiederholung der Grundbegriffe, SQL, Normalisierung, OLTP vs OLAP
- Datenbanktechnologie für Data Warehouses, SQL für OLAP
- Daten-Schemata, Cubes, Hierarchie, Modellierung, Performance-Aspekte
- OLAP-Operationen: Drill-down, Roll-up, Slice, Dice, Pivot
- Stern-Schema, Schneeflocken-Schema
- Denormalisierung, Materialized Views
- Raid-Systeme, Netzwerke, Backups
- Berichte (Reporting), Dashboards
- Usability

Literatur

2.8 [MIE]: Data Mining

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)						
Modul	[MKOMO]		Lehrveranstaltung	Data Mining		
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
1 (WiSe) / 2 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium	

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Kompetenz- semester [MIE]	Teilprüfung: Experimentelle Arbeit als Teilleistung und Klausur 1,5h oder mündl. Prüfung	Vorlesung und Übungen (4 SWS)	F. Klawonn

Kompetenzziele

- Verständnis von Data Mining Aufgaben
- Fähigkeit, Data Mining Aufgaben mittels des CRISP-DM-Modells zu lösen

Lehrinhalte

- CRISP-DM-Modell
- Data Mining Aufgaben
- Business Understanding
- Data Understanding
- Data Preparation
- Modellierung und Modelle
- Evaluation

Literatur

 Berthold, M.R.; Borgelt, C.; Höppner, F.; Klawonn, F. Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data. Springer, London, 2010.

2.9 Entwicklung komplexer Softwaresyteme

	Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)						
Modul	[MSOE]		Lehrveranstaltung	Entwicklung komplexer Softwaresysteme			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
2 (WiSe) / 1 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Teilprüfung: Experimentelle Arbeit als Teilleistung und Klausur 1,5h oder mündl. Prüfung	Vorlesung, Übungen, Tutorium: aktives Erarbeiten von Teil- themen Laborprojekt (3+1 SWS)	B. Müller

Kompetenzziele

- Architektur, Realisierung und Anwendung komplexer Softwaresysteme kennen, konstruieren und einsetzen können
- Verständnis für die Problemstellungen komplexer Softwaresysteme entwickeln

Lehrinhalte

- Architektur-Alternativen im betrieblichen/kommerziellen und im technischen Bereich
- Verteilung, Load-Balancing, Replikation, verteilte Transaktionalität
- Spezifikation und Modellierung von Systemkomponenten

- Starke, Gernot. Effektive Software-Architekturen, 3. Auflage, Hanser, 2008.
- Andresen, Andreas. Komponentenbasierte Softwareentwicklung mit MDA, UML2 und XML, 2.
 Auflage. Hanser, 2004.
- Reussner, Ralf; Hasselbring, Wilhelm. Handbuch der Software-Architektur, 2. Auflage. dpunkt, 2008.
- Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley, 2003.

2.10 Numerische Algorithmen

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)						
Modul	[THEOR]		Lehrveranstaltung	Numerische Algorithmen		
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung	
2 (WiSe) / 1 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium	

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Modulprüfung: Klausur 3h oder mündl. Prüfung	Interactive Engage- ment in einer Mi- schung aus Vorlesung, Selbstarbeitsphasen, Übungen, Projekt- arbeit und Labor (3+1 SWS)	P. Riegler

Kompetenzziele

Nachdem Studierende diese Veranstaltung besucht haben, können sie

- numerische Fehlerarten benennen und für eine konkrete numerische Berechnung quantitativ abschätzen
- beurteilen, ob eine numerische Aufgabenstellung instabil oder schlecht konditioniert ist
- numerische Integrationsverfahren für ein vorliegendes Integrationsproblem geeignet auswählen
- Problematiken bei der Verwendung rechnererzeugter Zufallszahlen benennen
- die prinzipiellen Unterschiede zwischen numerischen und exakten Berechnungen benennen und an geeigneten Beispielen erläutern

Feingranulare Ziele werden zu Beginn der Veranstaltungsreihe und den jeweiligen Veranstaltungsabschnitten vorgestellt.

Lehrinhalte

- Fließkomma-Arithmetik und Ganzzahl-Arithmetik
- Stabilität und Konditionierung
- numerisches Lösen linearer Gleichungssysteme
- numerische Integration
- Erzeugung von Zufallszahlen
- Interpolation

Literatur

Press et al. Numerical Recipes.

2.11 Komplexität und Berechenbarkeit

	Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)						
Modul	[THEOR]	Lehrveranstaltung	Komplex	ität und Berechenbarkeit			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Studentische Punkte Arbeitsbelastung			
2 (WiSe) / 1 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Modulprüfung: Klausur 3h oder mündl. Prüfung	Seminaristische Vorlesung, Selbstarbeitsphasen, Projektarbeit, Übungen (3+1 SWS)	P. Riegler

Kompetenzziele

- Die Modelle, Methoden und Konzepte der Berechenbarkeits- und Komplexitätstheorie können benannt, formal beschrieben werden und sind verstanden. Ihre Relevanz kann an geeigneten Beispielen beschrieben werden.
- Die formalen Beschreibungen ausgehend von Definitionen und die durch Sätze ausgedrückten Zusammenhänge und Beziehungen und die verwendeten Konstruktions- und Beweisideen sind verstanden. Die auf formaler Ebene gewonnenen Erkenntnisse können auf Anwendungen der Praxis übertragen und angewandt werden.

Lehrinhalte

- Turingmaschinen, Berechenbarkeitsbegriffe und ihre Äquivalenz, weitere Berechnungsmodelle
- Entscheidbarkeit, Reduzierbarkeit, Halteproblem und andere unentscheidbare Probleme
- Determinismus und Nichtdeterminismus
- Zeit- und Platzkomplexität, Komplexitätsklassen und -hierarchien, polynomielle Reduzierbarkeit
- NP-Vollständigkeit, Erfüllbarkeitsproblem und andere NP-vollständige Probleme
- Komplexität von Optimierungsproblemen und Kryptosystemen, weitere Problemklassen

- Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. Introduction to Automata Theory, Languages, and Computation. 2nd Edition. Addison-Wesley 2001.
- Asteroth, Alexander; Baier, Christel. Theoretische Informatik. Pearson Studium 2002.

2.13 Systembeschreibung

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[MSYE]		Lehrveranstaltung	Systembeschreibung			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
2 (WiSe) / 1 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Teilprüfung: Experimentelle Arbeit als Teilleistung und Klausur 1,5h oder mündl. Prüfung	Seminaristische Vorlesung, Selbstarbeitsphasen, Projektarbeit, Übungen (3+1 SWS)	J. Kreyßig

Kompetenzziele

Studierende

- verstehen Probleme und Konzepte der Beschreibung von aufgabenspezifischen Systemen
- entwerfen aufgabenspezifische Systeme und deren Programmierung in einer h\u00f6heren Programmiersprache

Lehrinhalte

- Vor- und Nachteile von Systemen aus Standardkomponenten bzw. aufgabenspezifischen Komponenten.
- Prozessorbaukästen
- Aufgabenspezifische Komponenten
- Compiler zur Systemgenerierung
- Kopplung zwischen Systementwurf und Programmierung
- Betriebssysteme, Realzeitaspekte
- Test, Kostenaspekte
- Detailierte Diskussion eines typischen Anwendungsgebietes (z.B. Navigation oder RFID)
- Paktische Übungen zum Entwurf

Literatur

• Literatur zum Thema System On Chip und Systemarchitekturen wird je nach dem gewählten Anwendungsgebiet bekanntgegeben.

2.14 [MOBSYE]: Robotik

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[MKOMO]		Lehrveranstaltung	Robotik			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
2 (WiSe) / 1 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Kompetenz- semester [MOBSYE]	Teilprüfung: Experimentelle Arbeit als Teilleistung und Klausur 1,5h oder mündl. Prüfung	Vorlesung und Übungen (4 SWS)	G. Bikker

Kompetenzziele

Studierende

- programmieren autonome Roboter
- verstehen und bewerten die zugrundeliegenden Verfahren

Lehrinhalte

- Historie und Grundbegriffe (Verbindung zu Bildverarbeitung, Bilderkennung und KI)
- Hardware, Sensoren
- Anwendungen und Herausforderungen in der Robotik
- Software-Entwicklungsumgebungen
- Embedded Betriebssysteme und Java oder C/C++
- Planning
- Robot Vision
- Reasoning
- Testen
- Programmierumgebungen
- Fallbeispiele (u.a. autonome Fahrzeuge, Roboter)

Literatur

2.15 [MIE] oder [MOBSYE]: Künstliche Intelligenz

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[MKOMO]		Lehrveranstaltung	Künstliche Intelligenz			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
2 (WiSe) / 1 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Kompetenz- semester [MIE, MOBSYE]	Teilprüfung: Experimentelle Arbeit als Teilleistung und Klausur 1,5h oder mündl. Prüfung	Vorlesung und Übungen (4 SWS)	F. Klawonn

Kompetenzziele

• Die Studierenden kennen und verstehen die vorgestellten Modelle und Methoden, analysieren die Fallbeispiele, bewerten die mögliche Modellierungs- und Lösungsvarianten und wenden diese in dem konkreten Fall an.

Lehrinhalte

- Problemdarstellung und Problemlösung
- Generieren und Testen, Problembeschränkungen, Zielreduktion
- Erforschen von Alternativen, Heuristiken
- Suchen von Pfaden in Graphen, Suchen von kürzesten Graphen
- Wissensrepräsentation
- Regelbasierte Verfahren, Semantische Netze und Frames Expertensysteme
- Formale Logik und Fuzzy Logik
- Natürliche Neuronale Netze, Künstliche Neuronale Netze, das Perzeptron
- Intelligente Softwareagenten: Definition, Charakteristika, Klassifikation Systemarchitektur Kommunikation und Kooperation, Iernen und planen
- Sicherheit und Vertraulichkeit, Anwendungsbeispiele

- Boersch, I.; Heinsohn, J., Socher-Ambrosius, R. Wissensverarbeitung. Spektrum Akademischer Verlag 2007. ISBN: 978-3-8274-1844-9.
- Brenner, R.; Nauck, D.; Klawonn, F.; Kruse, R. Neuronale Netze und Fuzzy- Systeme Vieweg, 1996. ISBN: 3-528-15265-6.
- Nilsson, N. Artificial Intelligence: A new Synthesis. Morgan Kaufmann Publishers 2003. ISBN 1-558-60535-5.
- Russell, S.; Norvig, P. Künstliche Intelligenz. Pearson Studium, 2004. ISBN 3-8273-7089-2.
- Winston, P.H. Artificial Intelligence Addison-Wesley, 1992. ISBN: 0-201-53377-4.

• Zarnekow, R.; Wittig, H. Intelligente Softwareagenten.

2.16 [MIE]: Statistische Methoden

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[MKOMO]		Lehrveranstaltung	Statistische Methoden			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
2 (WiSe) / 1 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Kompetenz- semester [MIE]	Teilprüfung: Experimentelle Arbeit als Teilleistung und Klausur 1,5h oder mündl. Prüfung	Vorlesung und Übungen (4 SWS)	F. Klawonn

Kompetenzziele

Studierende

• verstehen Probleme und Konzepte der Wahrscheinlichkeitsrechnung und Statistik

Lehrinhalte

- Wahrscheinlichkeitsbegriff
- Modellierung und Berechnung von Phänomenen mit Wahrscheinlichkeiten
- Univariate Zufallsvariablen und charakteristische Eigenschaften
- Ausgewählte Verteilungen
- Deskriptive Statistik
- Stichproben und Statistiken
- Parameterschätzung
- Konfidenzintervalle
- Hypothesentests
- Multivariate Statistik (Korrelation, Kontingenztafeln, Regression, Unabhängigkeitstests)
- Ausgewählte Spezialthemen (z.B. Bayes'sche Statistik, robuste Statistik, Simulation, Warteschlangentheorie, Spieltheorie,...)

Literatur

2.17 Software-Engineering-Projekt

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[MSOE]	Lehrveranstaltung Software-Engineering-Projekt			-Engineering-Projekt		
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
3 (WiSe) / 4 (SoSe)	1	1	Pflicht	5	150h Projektarbeit		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Teilprüfung: Experimentelle Arbeit	Angeleitete, selbstständige Projektarbeit	B. Müller

Kompetenzziele

Studierende

- analysieren Software-Systeme
- entwerfen Architekur
- verwenden Vorgehensmodelle (z.B. Scrum, V-Modell) in einem Projekt
- beurteilen und verwenden Werkzeuge für die Entwicklung großer Systeme
- arbeiten im Team und lösen Konflikte

Lehrinhalte

- Analyse- und Entwurfsmethoden
- Vorgehensmodelle (exemplarisch)
- Werkzeuge für Spezifikation, Modellierung, Repository, Build, Test, Monitoring, ...
- Team-Arbeit und dessen Werkzeugunterstützung
- Arbeitsteilige, schnittstellenbasierte Realisierung von Modulen und Gesamtsystemen
- Open-Source-Systeme als Werkzeuge

- Abhängig von den jeweils verwendeten Methoden und Prozessen.
- Dokumentation von Open-Source-Systemen, u.a. Junit, CVS/SVN, Maven, Hudson/Jenkins.

2.18 Gesprächs- und Verhandlungsführung – Leitung von Arbeitsgruppem

	Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[KOMMUN]		Lehrveranstaltung	Gesprächs- und Verhandlungs- führung – Leitung von Arbeits- gruppen				
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung			
3 (WiSe) / 4 (SoSe)	1	1	Pflicht	5	150h, davon ca. 30% Kontaktstudium, ca. 70% Eigenstudium			

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Modulprüfung: Referat	Seminaristische Vorlesung, Übungen (3+1 SWS)	R. Gerndt

Kompetenzziele

Studierende

- benennen die Meta-Ebenen der Kommunikation
- organisieren, leiten und führen geschäftliche Gespräche
- verhandeln nach dem Harvard-Modell
- erkennen "Verhandlungstricks" des Partners

Lehrinhalte

- Den eigenen Kommunikationsstil kennen
- Verbale und nonverbale Gesprächstechniken kennenlernen, bewusst, strukturiert und gezielt einsetzen
- Besprechungen planen, durchführen und nachbearbeiten
- Argumentationsstrategien
- Konfliktgespräche führen
- Pragmatische und systematische Verhandlungsführung
- Verhandeln nach dem Harvard-Konzept
- Typische Verhandlungsfehler erkennen und vermeiden

Literatur

2.19 Wahlpflichtfach 1+2

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul [MKOMO] Lehrveranstaltung diverse							
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
3	1	2	Wahl	5+5	300h, davon ca. 40% Kontaktstudium, ca. 60% Eigenstudium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine Besonder- heiten	Wahlpflichtfach	Modulprüfung: Klausur 1,5h oder mündliche Prüfung oder Referat oder Erstellung von Dokumentation von Rechnerprogrammen oder Hausarbeit oder experimentelle Arbeit oder rechnergestützte Prüfung	Unterricht, Labor mit Projektvorträgen, Projektarbeit	T. Sander

Kompetenzziele

- Vertiefende Anwendung der erworbenen Grundlagenkompetenz Informatik.
- Erweiterung des eigenen Themenhorizontes.
- Verständnis für den Grad der IT-Durchdringung aller Aspekte des täglichen Lebens, im Zuge der fortschreitenden Erschließung neuer Anwendungsgebiete durch neue Technologien sowie der Effizienzsteigerung in bestehenden Anwendungen.
- Identifizierung und Bewertung von Chancen und Risiken, die sich im Zuge des Technikfortschritts in der Informatik für Wirtschaft und Gesellschaft ergeben.

Lehrinhalte

U.a. wiederkehrend angebotene Wahlpflichtthemen:

- Spieltheorie
- Entwicklung von Informationssystemen
- Umweltinformatik
- Informatik & Gesellschaft
- Autosar
- C für Mikroelektronik
- Ausgewählte Themen der Elektrotechnik
- Quantenrechner und Quantencomputing
- Concurrent Computing
- Malware / IT-Sicherheit / Softwaresicherheit
- Apps f
 ür mobile Systeme

Literatur

2.20 System-Engineering-Projekt

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[MSYE]		Lehrveranstaltung	System-Engineering-Projekt			
Semester	Dauer (Sem.) Häufigkeit (pro Jahr)		Art	ECTS- Punkte	Studentische Arbeitsbelastung		
4 (WiSe) / 3 (SoSe)	1	1	Pflicht	5	150h Projektarbeit		

Voraus- setzungen für die Teilnahme	ingen für barkeit dauer (Voraussetzung für die		Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Teilprüfung: Experimentelle Arbeit	Projektarbeit in Gruppen	J. Kreyßig / U. Klages

Kompetenzziele

 Kompetenz zur Durchführung eines Projektes in den Bereichen der Vorlesungen Systembeschreibung und Real-Time-Systems

Lehrinhalte

- Projektdefinition
- Arbeitspakete
- Präsentation von Zwischenergebnissen
- Abschlussvortrag

Literatur

• Eigene Recherche zum gewählten Projekt

2.21 Tutorium

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[KOMMUN]		Lehrveranstaltung	Tutorium			
Semester	Dauer (Sem.) Häufigkeit (pro Jahr)		Art	ECTS- Punkte	Studentische Arbeitsbelastung		
4 (WiSe) / 3 (SoSe)	1	1	Pflicht	5	150h Tutorium		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Keine	Keine Beson- derheiten	Modulprüfung: Referat	Tutorium	R. Gerndt

Kompetenzziele

• Studierende sind in der Lage, eigene Tutorien mit Bezug zur Informatik vorzubereiten und zu halten

Lehrinhalte

- Inhalte mit Bezug zur Informatik
- Menschenführung
- Tutorien halten und gestalten

Literatur

• Eigene Recherche

2.22 Abschlussarbeit (Masterarbeit)

Ostfalia Hochschule für Angewandte Wissenschaften Studiengang Informatik (M.Sc.)							
Modul	[ABM]		Lehrveranstaltung	Abschlussarbeit (Masterarbeit)			
Semester	Dauer (Sem.)	Häufigkeit (pro Jahr)	Art	ECTS- Punkte	Studentische Arbeitsbelastung		
4	1	1	Pflicht	30	900h		

Voraus- setzungen für die Teilnahme	Verwend- barkeit	Prüfungsform / Prüfungs- dauer (Voraussetzung für die Vergabe von ECTS-Punkten)	Vorgesehene Lehr- und Lernmethoden/ -formen	Modulverant- wortliche(r)
Prüfungen der Module des 1. bis einschliesslich 2. Semesters bestanden	Keine Beson- derheiten	Master-Arbeit und Kolloquium	Wissenschaftliche Tätigkeit, Projektarbeit	F. Seutter

Kompetenzziele

- Ein komplexes praxisbezogenes oder ein forschungsorientiertes Problem aus dem Fachgebiet der Informatik bzw. des IT-Managements soll innerhalb einer vorgegebenen Frist auf der Grundlage wissenschaftlicher Methoden selbständig bearbeitet, in einer schriftlichen wissenschaftlichen Ausarbeitung dokumentiert und die Arbeitsergebnisse in einem Fachgespräch präsentiert und verteidigt werden können.
- Das erworbene Fachwissen soll in einem forschungs- oder praxisbezogenen Umfeld angewandt und selbständig um das für die Bearbeitung des Problems notwendige Anwendungs- und Spezialwissen ergänzt und vertieft werden.

Lehrinhalte

• Inhalte mit Bezug zur Informatik

Literatur

Die Literatur wird vom Studierenden / von der Studierenden selbst zusammengestellt