Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	sws	Eigen- studium	Credit Points	Dozent
B01	Mathematik und In- formatik	Aneignung von analytischem und systematischem Denken						12	
B01.1	Mathematik I	Mengenlehre, Gleichungen, Ungleichungen, Funktionen, Darstellungen von Funktionen, Trigonometrie, Grenzwerte, Komplexe Zahlen, Vektorrechnung, Differentialrechnung, Unendliche Reihen, Integralrechnung.	1	V	K90	6	5,7	8	Dr. D. Balan
B01.2	Informatik	Modularisierung von Algorithmen, Rekursive und parallele Algorithmen, Datenstruktur, Objektorientierte Programmierung, Hardware und Software, Software Engineering, Schaltalgebra	1	V	K60	2	1	2	DiplIng. B. Zemmiri; Dipl Ing. G. Herr- mann
B01.3	Labor für Informatik	Arbeiten mit einer höheren Programmiersprache auf PC-Basis. Arbeiten mit einfachen und strukturierten Anweisungen und mit Textdateien und Anwenden von Prozeduren und Funktionen.	2	Р	PA	1	1,8	2	DiplIng. B.Zemmiri; DiplIng. G. Herrmann
B02	Höhere Mathematik	Erlernen der mathematischen Methoden und Erkennen des Potentials der Mathematik bei der Lösung von konstruktiven, logistischen und anderen Problemen im Maschinenbau						8	
B02.1	Mathematik II	Differentialgleichungen: Aufstellen und Lösen gewöhnlicher DGIn 1. und 2.Ordnung, Anwendungen. Potenz- und Fourierreihen. Grundlagen der Matrizenrechnung, Algorithmen. Weiterführende Differential- und Integralrechnung für Funktionen mit einer unabhängigen Veränderlichen. Anwendungen. Funktionen mit mehreren unabhängigen Veränderlichen: Grundlagen, partielle Ableitungen, das totale Differential, relative Extremwerte.	2	V	K90	6	5,7	8	Prof. Dr. F. Klinge
B03	Physik	Kenntnisse der physikalischen Grundlagen im Maschinen- bau, Kenntnisse der Thermodynamik von Gasen und dem Verhalten von Strömungen						12	
B03.1	Experimentalphysik	Grundlagen der Atomphysik, Spektroskopie, Laser. Grundbegriffe der Wellenlehre, Ort-Zeit-Funktion der mechanischen Welle, Transversal- und Longitudinalwellen, Schall- und Ultraschallwellen, stehende Welle. Interferenz, Beugung, Reflexion und Brechung, Totalreflexion. Optik: Abbildung durch Konkav- und Konvexspiegel, dünne Linsen; optische Geräte. Anwendungen in Maschinenbau	3	V	K60	2	2,3	3	Prof. Dr. I. Ahmed

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
B03.2	Labor für Experimental- physik	Fehlerrechnung. Durchführung von Laborversuchen: Untersuchung von gedämpften und erzwungenen Schwingungen, Bestimmung des Schubmoduls und des Trägheitsmomentes durch Drehschwingungen, Pendelversuch zur Bestimmung der Fallbeschleunigung, Ermittlung der Zähigkeit von Flüssigkeiten nach Stockes, der Schallfrequenz mit dem Resonanzrohr (stehende Welle) und der Brennweite von Linsen.	4	L	PA	1	0,5	1	Prof. Dr. I. Ahmed
B03.3	Thermodynamik	Zustandsgrößen, Arbeit und innere Energie, Hauptsätze und Enthalpie, Wärmekapazität und Wärmeübertragung, Zustandsgleichungen, Zustandsänderungen, Normvolumen, Universelle Gaskonstante, Entropie, Kreisprozesse mit Anwendungen, Gasgemische, Wärmedehnung	4	V	K90	3	2,9	4	Prof. Dr. I. Ahmed
B03.4	Strömungslehre	Hydrostatik, Aerostatik, Kontinuitätssatz, Energiesatz, Impulssatz, Ähnlichkeitsgesetze, Strömungsformen, Rohrströmung, Quasistationäre Strömung, Gasdynamik	4	V	K90	3	2,9	4	Prof. Dr. F. Klinge
B04	Elektrotechnik	Grundlagen der Elektrotechnik						9	
B04.1	Elektrotechnik I	SI-Einheiten, Strom- und Spannung, elektrisches Potential und Energie, Widerstand, Widerstandsnetzwerke, Messung von Strom- und Spannung, Feldbegriff, elektrostatisches Feld, Kapazität, magnetisches Feld, magnetischer Kreis, Magnetisierungskennlinie, Induktion und Selbstinduktion, Induktivität	1	V	K60	2	2,3	3	Prof. Dr. R. Roskam
B04.2	Elektrotechnik II	Wechselstromtechnik, Drehstrom, Energie- und Leistungsberechnung, Transformatoren, Halbleiterbauteile und Grundlagen der Digitaltechnik.	2	V	K90	4	3,4	5	DiplIng. B. Zemmiri
B04.3	Labor Elektrotechnik I	Es sind Versuche aus folgenden Themenkreisen durchzuführen: Messgeräte der Elektrotechnik, elektrische und elektronische Bauteile, Messen von Strom, Spannung und Leistung.	2	L	PA	1	0,5	1	DiplIng. B. Zemmiri
B05	Grundlagen der Me- chanik	Berechnung von inneren und äußeren Kräften für die Auslegung von Maschinen						7	
B05.1	Statik	Ebene und räumliche Statik: Gleichgewichtsbedingungen, Schwerpunkt, statische Bestimmtheit, Reibung, Schnittgrößen	1	V	K90	6	4,4	7	Prof. Dr. V. Dorsch, Prof. Dr. M. Ramb- ke
B06	Dynamik	Analyse der dynamischen Eigenschaften technischer Systeme; Anwendung der Analyse für die Auslegung und Konstruktion sich bewegender Maschinen						9	

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
B06.1	Dynamik	Ebene Kinematik: Geschwindigkeit, Beschleunigung, Rotation und Translation, Momentanpol; ebene Kinetik: Satz von Newton, Drallsatz, Impulssatz, Stoß, Energie- und Arbeitssatz, Massenträgheitsmoment	3	V	K90	5	3,9	6	Prof. Dr. V. Dorsch
B06.2	Technische Schwin- gungslehre	Modellbildung von Ein- und Mehrmassenschwingern, Schwinger mit und ohne Dämpfung, Ein- und Ausschwingvorgänge, Übertragungsfunktion, Charakterisierung der Schwingungsparameter: Masse, Steifigkeit und Dämpfung, unterschiedliche Anregungsformen und zugehörige Lösungsalgorithmen. Beeinflussung der Schwingungseigenschaften technischer Systeme.	4	V	K60	2	2,3	3	Prof. Dr. I. Ahmed
B07	Grundlagen Konstruktion	Die Studenten soll für eine konstruktive Tätigkeit grundlegendes Wissen erhalten. Sie sollen befähigt werden, einfache mechanische Systeme zu konstruieren und zu dokumentieren. Sie sollen dazu in der Lage sein, stabförmige Bauteile dimensionieren und Standardmaschinenelemente zu berechnen.						13	
B07.1	Konstruktionsgrundla- gen	Grundlagen der Beschreibung technischer Produkte; Einführung in das Konstruieren; Grundlegende Konstruktionsregeln; Einführung in die Darstellende Geometrie; Technisches Freihandzeichnen; Erstellen Technischer Zeichnungen; Maßtoleranzen und Passungen; Oberflächen und Kanten; Normung, Werkstoffe und Gestaltelemente	1	V + P	KP (K60 +PA)	2	3,7	3	Prof. Dr. S. Lippardt; Dipl Ing. M. Nöhrhoff
B07.2	Maschinenelemente I	Festigkeit und zulässige Spannungen, statischer und dynamischer Festigkeitsnachweis; Auslegung und Berechnung von Niet-, Schraub-, Schweiß- und Bolzenverbindungen, elastischen Federn, Achsen und Wellen	2	V + P	KP (K90 +PA)	4	3,4	6	Prof. Dr. J. Ihme; Dipl Ing. E. Ho- meister
B07.3	Festigkeitslehre	Spannungen (Zug, Druck, Schub, Biegung, Torsion, Flächenpressung), Formänderungen; Flächenträgheitsmomente, Hauptträgheitsachsen; Schnittgrößen an Balken und Rahmen; zusammengesetzte Beanspruchungen: ebener Spannungszustand, Festigkeitshypothesen; Ermittlung der Biegelinie; statisch überbestimmte Systeme; Knickung	2	V	K90	4	3,4	4	Prof. Dr. H. Brüggemann
B08	Konstruktion Vertiefung	Der/die Studierende soll die im Modul Grundlagen der Konstruktion erworbenen Fähigkeiten vertiefen und anwenden. Nach Beendigung des Moduls soll er/sie in der Lage sein, selbstständig Konstruktionsaufgaben zu übernehmen und funktionsfähige "Technische Systeme" zu entwickeln.						13	

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
B08.1	Maschinenelemente II	Geometrie der gerad- und schrägverzahnten Stirnräder und geradverzahnten Kegelräder, Tragfähigkeit der Stirnräder, Wälzlagerungen, nicht-schaltbare und schaltbare Kupplungen	3	V + P	KP (K90 +PA)	6	4,4	7	Prof. Dr. H. Gerloff; Dipl Ing. H. Weber
B08.2	CAD	Grundbegriffe, 3D-Grundkonstruktionen, Spezielle 3D-Techniken, 2D-Konstruktionen, systematischer Aufbau des Produktmodells, Aufbau von Hard- und Software, Grafische und Geometrische Datenverarbeitung, Datenstrukturen, Schnittstellen, Anwendung des Produktmodells auf nachfolgende Produktlebensphasen	3	V	K60	1	0,5	1	Prof. Dr. A. Ligocki
B08.3	Labor für CAD	Einführung in die 3D-Konstruktion, Erzeugung von Volumen durch Flächenelemente mit Tiefenzuweisung, Solid Elemente und Boolesche Operationen. Erzeugung von technischen Zeichnungen, Variantenkonstruktionen.	3	L	PA	1	3,1	2	Prof. Dr. A. Ligocki; Dipl Ing. B. Selon- ke
B08.4	Konstruktionssystematik	Elementare Arbeitsmethoden; Ablauf des Konstruktionsprozesses; Klären der Aufgabenstellung; Arbeiten mit Funktionsstrukturen; Vorhandene Lösungen nutzen - Konstruktionskataloge und Zulieferkomponenten; Gesamtlösung systematisch entwickeln; Bewertung und Auswahl	4	S	PA	2	1,0	3	Prof. Dr. S. Lippardt
B09	Werkstoffkunde	die Studierenden erhalten eine Einführung in die Grundlagen der metallischen und nichtmetallischen Werkstoffe, die für das Verständnis werkstoffkundlicher Vorgänge bei der Herstellung und Verarbeitung der Werkstoffe durch Urformen, Umformen und Fügen sowie während ihres Einsatzes erforderlich sind. Darauf aufbauend werden Kenntnisse wichtiger Konstruktionswerkstoffe (Stahl, NE-Metalle, Leichtbauwerkstoffe), deren Eigenschaften, Prüfung und normgerechte Bezeichnung vermittelt						6	
B09.1	Werkstoffkunde	Aufbau von Festkörpern, Kristallstrukturen, Gitterbaufehler und ihre Bedeutung, Kristallisation aus der Schmelze, Verformung und Rekristallisation, Legierungsbildung (Zustandsdiagramme), Eisen-Kohlenstoffdiagramm, Gefüge von Eisenlegierungen, γ/α -Umwandlung, Verfahren der Werkstoffprüfung, Korrosion von Metallen. Stahlherstellung, Wärmebehandlung der Stähle, Stahlgruppen und ihre Anwendungen, Normgerechte Bezeichnung von Stahl und Gusseisen, Werkstoffkunde der Leichtmetalle Al und Mg, normgerechte Bezeichnung, Werkstoffe für den Leichtbau von Fahrzeugen	1	V	K90	4	2,6	5	Prof. Dr. I. Nielsen

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
B09.2	Labor für Werkstoffkunde	Durchführung der Laborversuche Zugversuch, Kerbschlagbiegeversuch, Härteprüfung, Stirnabschreckversuch nach Jominy, Metallografie	2	L	PA	1	0,5	1	Prof. Dr. I. Nielsen
B10	Antriebstechnik	Verständnis für die Wirkungsweise unterschiedlicher Antriebe. Antriebe für bestimmte Aufgaben auswählen können.						6	
B10.1	Elektrische Antriebe	Magnetischer Kreis, Gleichstrommaschine (Aufbau und Wirkungsweise, Varianten der Anschlussart, Ersatzschaltbild, Berechnung, Dehmoment-Drehzahl-Verhalten), Drehstrom und Drehfeld, Stern-/Dreieckschaltung, Synchronmaschine (Aufbau und Wirkungsweise, Ersatzschaltbild, Zeigerdiagramm für Generator und Motorbetrieb), Asynchronmaschine (Aufbau und Wirkungsweise, Ersatzschaltbild und Vereinfachungen, Berechnung, Stromortskurve, Drehmoment-Drehzahlverhalten), Betrieb elektrischer Maschinen	3	V	K90	2	1,0	2	Prof. Dr. R. Roskam
B10.2	Fluidische Antriebe	Hydraulik (Hydraulikmedium, Hydrostatik und -dynamik, Pumpen und Motoren, Zylinder und Speicher, Steuerelemen- te und Schaltungen), Pneumatik (Besonderheiten im Ver- gleich zur Hydraulik, Steuerelemente und Schaltungen)	3	V		2	1,0	2	Prof. Dr. R. Roskam
B10.3	Labor Elektrische Antriebe	Aufbau und Anschluss von Gleichstrom- und Asynchronmotor. Aufnahme der Drehmoment-Drehzahl-Kennlinien.	4	L	PA	1	0,5	1	Dr. D. Balan; DiplIng. U. Biskup
B10.4	Labor Fluidische Antrie- be	Hydropumpe und -motor, ausgewählte Hydroventile, pneumatische Schaltungen	4	L		1	0,5	1	DiplIng. F. Przytulla; DiplIng. H. Uhe
B11	Mess- und Regelungs- technik	Grundsätzliches Verständnis der Mess- und Regelungstechnik, Fähigkeiten zur Lösung einfacher Probleme auf diesem Gebiet						10	
B11.1	Regelungstechnik	Technischer Aufbau und Arbeitsweise von Regelkreisen, Beschreibung von Regelkreisen durch Dgl., Auslegung von ; Reglern des PID-Typs im Zeitbereich	3	V	K60	2	1,0	2	Prof. Dr. X. Liu-Henke
B11.2	Labor für Regelungs- technik	Experimentelle Erprobung und Optimierung von Regelkreisen des Maschinenbaus	4	L	PA oder R	1	1,8	2	Prof. Dr. X. Liu-Henke
B11.3	Messtechnik	Grundbegriffe, Messkette, Signalformen. Systematische und zufällige Fehler. Messprinzipien. Auswerteschaltungen und Basissensoren zur Messung elektrischer und nichtelektrischer Größen.	3	V	K60	2	1,0	2	Dr. D. Balan

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
B11.4	Labor für Messtechnik	Messung nichtelektrischer Größen, Messwerterfassung und Auswertung.	4	L	PA	1	0,5	1	Dr. D. Balan
B11.5	Angewandte Informatik	Programmierung mit einer höheren Programmiersprache: Prozeduren und Funktionen. Datenstrukturen, Datentypen, zusammengesetzte Daten und Zeigertypen, Objekte.	3	V	K60	2	2,3	3	DiplIng. B. Zemmiri; Dipl Ing. G. Herr- mann
B12	Fertigungstechnik	Die Studierenden sollen die wichtigsten Verfahren der Erzeugung und Bearbeitung metallischer Werkstoffe und aus ihnen gefertigter Werkstücke sowie der dazu eingesetzten Maschinen und Anlagen kennenlernen. Damit sollen insbesondere auch die Voraussetzungen für Berücksichtigung fertigungstechnischer Aspekte bei der Konstruktion geschaffen werden.						7	
B12.1	Fertigungstechnik I	Grundlagen des Spanens; Drehen, Fräsen, Bohren, Schleifen, thermisches, chemisches und elektrochemisches Abtragen;; Grundlagen umformender Verfahren: Blechumformung, Kaltmassivumformung, Warmumformung, Sonderverfahren.	1	V	K90	3	1,6	3	Prof. Dr. H. Gerloff; Prof. Dr. M. Ramb- ke
B12.2	Fertigungstechnik II	Gießen: Vorgänge bei der Erstarrung; Sandguss, Feinguss, Druckguss, Kokillenguss; Pulvermetallurgie; Rapid Prototyping; Fügen: Werkstoffliche Grundlagen des Schweißens, Gestaltungshinweise, Schweißnahtprüfung; Schmelzschweißen: Lichtbogenschweißverfahren, Elektronenstrahlschweißen, Laserschweißen; Widerstandspressschweißen; Löten; Kleben	2	V	K90	3	1,6	3	Prof. Dr. I. Nielsen
B12.3	Labor zu Fertigungs- technik II	Laborversuche: wechselnde Auswahl aus: Autogenschweißen, WIG, MAG, E-Hand, Punktschweißen, Pulvermetallurgie, Giessen	3	L	PA	1	0,5	1	Prof. Dr. I. Nielsen
B13	Technisches Mana- gement	Vermittlung grundlegender Kenntnisse des Qualitätsmana- gements, der Betriebswirtschaftslehre des Rechts und der Projektarbeit						12	
B13.1	Qualitätsmanagement	Grundlagen des Qualitätsmanagements: Elementare Werkzeuge und Methoden des QM, Fehlermöglichkeits- und - einflussanalyse (FMEA), Kundenorientierte Produktentwicklung und Qualitätsplanung (QFD), Statistische Versuchsplanung, Fähigkeitsuntersuchungen, QM-System nach DIN ISO 9000, TQM	4	V	K60	2	1,0	2	Prof. Dr. H. Brüggemann

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
B13.2	BWL	Organisation,Beschaffung,Produktion,Absatz,Kostenrechnung,Investitionsrechnung,Finanzierung,Controlling,Kennzahlen,Gewinnschwellenanalyse,Arbeitsrecht,strateg. Führung, Umweltmanagement	4	V	K90	4	2,1	4	Prof. Dr. C. Haats
B13.3	Recht	Kaufverträge, Miet- und Wartungsverträge sowie Werkverträge mit ihren Mängelansprüchen	4	V	K60	2	1,0	2	Prof. Dr. C. Haats
B13.4	Projekt	In Vorlesung: Grundlagen des Projektmanagements: Pla- nung, Organisation und Steuerung von Projekten; In Projekt- arbeit: Erarbeitung, Dokumentation und Präsentation einer technischen Problemlösung in einem Team	4	V + P	KP (PA +K)	1	2,3	3	Prof. Dr. H. Brüggemann
B14	Praxissemester	Die Studierenden sollen an anwendungsorientierte Tätigkeiten herangeführt werden und die Möglichkeit erhalten, die in verschiedenen Disziplinen vermittelten Kenntnisse und Fertigkeiten unter Anleitung auf komplexe Probleme der Praxis anzuwenden. Sie sollen verschiedene Aspekte der betrieblichen Entscheidungsprozesse sowie deren Zusammenwirken kennenlernen und vertiefte Einblicke in technische, organisatorische, ökonomische, rechtliche und soziale Zusammenhänge des Betriebsgeschehens erhalten. Die Fähigkeit der Studierenden zum erfolgreichen Umsetzen wissenschaftlicher Erkenntnisse und Methoden in konkreten Praxissituationen soll gefördert und entwickelt werden.						28	
B14.1	Workshop Sozialkom- petenz	Theoretische Grundlagen sozialen Verhaltens, Übungen zur Verhaltenssicherheit in Orientierung an Beispielsituationen aus dem betrieblichen Alltag.	5	S				2	Dr. S. Gerloff
B14.2	Studienarbeit	je nach Aufgabenstellung	5	Р	PA			12	Professor/-in nach Wahl der/des Stu- dierenden
B14.3	Studienarbeit	je nach Aufgabenstellung	5	Р	PA			12	Professor/-in nach Wahl der/des Stu- dierenden
B14.4	Seminarvortrag	Präsentationstechnik, Inhalt des Vortrags nach Wahl der/des Studierenden in Absprache mit der Dozentin/dem Dozenten	5	V + S	R			2	Professor/-in nach Wahl der/des Stu- dierenden
P01	Pflichtmodul 1							8	

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
			6					8	
P02	Pflichtmodul 2							8	
			6					8	
P03	Pflichtmodul 3							8	
			6					8	
WP01	Wahlpflichtmodul 1							8	
		Wählbar sind nur Wahlpflichtmodule der gewählten Vertie- fungsrichtung.	6					8	
WP02	Wahlpflichtmodul 2							8	
		Wählbar sind Pflicht- und Wahlpflichtmodule aller Vertie- fungsrichtungen.	7					8	
WF	Wahlpflichtfach							2	
			7					2	
B15	Sprachen	Es sollen Grundkenntnisse in Englisch und einer weiteren Fremdsprache oder vertiefte Kenntnisse in Englisch erworben werden.						4	
B15.1	Englisch	business English	7					2	
B15.2	Fremdsprache	business English bzw. Geschäftsinhalte einer weiteren Sprache	7					2	
	Bachelorarbeit	Die Bachelorarbeit soll dem/der Studierenden die Möglichkeit geben, innerhalb einer vorgegebenen Frist ein Problem aus dem Gebiet des Maschinenbaus selbstständig nach wissenschaftlichen Methoden zu bearbeiten.						14	
	Bachelorarbeit	je nach Aufgabenstellung	7		PA			12	
	Kolloquium	je nach Aufgabenstellung	7		Kq			2	

SWS und Selbststudium jeweils in Zeitstunden pro Woche, die Summe aus beiden ergibt den **Workload** der Lehrveranstaltung. Inklusive Prüfungszeitraum erstreckt sich die Lehrveranstaltung über 18 Wochen, das Semester hat insgesamt 23 Wochen: (52 Jahreswochen – 6 Wochen Tarifurlaub)/2.

Modul	Modul /	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen-	Credit	Dozent
	Lehrveranstaltungen						studium	Points	

Pflichtmodule der Vertiefungsrichtung Konstruktion und Entwicklung

PK1	Angewandte Konstruktion	Die Studierenden werden im Kernbereich des Moduls fundierte, fachliche Kenntnisse auf dem Gebiet der Konstruktion mit modernen Werkstoffen erlangen. Im Rahmen der Modulausbildung wird ein Schwerpunkt im Bereich der Auswahl geeigneter Entwicklungsmethodiken sowie in der Analyse und Bewertung vorliegender und zu entwerfender Konstruktionen liegen. Die Fertigung zur Entwicklung und zur Umsetzung von Lösungsstrategien wird durch das Modul weiter vertieft.						8	
PK1.1	Kostengerechtes Konstruieren	Wertanalyse und Target Costing; Relativkosten- Informationssysteme; Verfahren der konstruktionsbegleiten- den Vorkalkulation (Kalkulation von spanend gefertigten Tei- len, von Schweißkonstruktionen, von Gussteilen und Blech- teilen); Montage- und prüfgerecht Konstruieren; Varianten- management und Produktstandardisierung; Prozesskosten- rechnung; Baureihen und Baukästen	6	V	K60	2	1,7	3	Prof. Dr. S. Lippardt
PK1.2	Konstruieren mit Kunststoffen	Aufbau und Einteilung der Kunststoffe, Werkstoffeigenschaften, Dimensionieren von Kunststoffbauteilen, beanspruchungsgerechtes Konstruieren, fertigungsgerechtes Konstruieren, Rippen und Sicken, Verbindungselemente, praktische Konstruktionsbeispiele	6	V	K60	2	2,3	3	Prof. Dr. T. Streilein
PK1.3	Management von Entwicklungsprojekten und PDM	Wandel der Produktentstehung, Definitionen, Projektphasen, Ideenfindung, Wissensmanagement, Prozessparallelisierungen, Qualitätswerkzeuge in der Entwicklung, Projekt- und Produktdatenmanagement-Systeme	6	V	PA	2	2,3	2	Prof. Dr. A. Ligocki
PK2	Entwicklungs- methoden	Die Studierenden können moderne Computerprogramme zur Konstruktion und Entwicklung anwenden. Sie sind in der Lage Bauteilgruppen in CAD zu konstruieren und deren Eigenschaften mittels FEM zu überprüfen. Die Studierenden haben sich das nötige Fachwissen angeeignet. Sie können die technischen Problemstellungen analysieren, strukturieren und Formulieren. Sie sind in der Lage Lösungsstrategien zu erarbeiten und Umzusetzen. Dabei wählen Sie geeignete Methoden aus. Die Ergebnisse ihrer Arbeit können sie überzeugend darstellen.						8	

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium		Dozent
PK2.1	Finite Element Methoden (FEM)	Theoretische Grundlagen der FEM, Modellaufbau, Preprozessing, Lineare und Nichtlineare FEM-Anwendung.	6	V	K90	4	1,6	5	Prof. Dr. K. Thiele, Prof. Dr. S. Lippardt
PK2.2	CAD und PDM	Fortgeschrittene Modellierungstechniken (Freiformflächen und Parametrisierung); Standardteilebibliotheken; Benennung von Bauteilen und Baugruppen; Nummerierungssysteme; Produktstruktur und Stücklistenwesen; Dateistrukturen und Schnittstellen; Übergabe des CAD-Modells an FE- und CAM-Anwendungen.	6	V	PA	1	0,5	2	Prof. Dr. A. Ligocki
PK2.3	Labor für Computer Aided Engineering	Anwendung fortgeschrittener Modellierungstechniken; Arbeiten mit Konstruktionsskizzen; Umgang mit großen Baugruppen und Ansichtsmanagement; Zeichnungen von Baugruppen; Erstellen von Stücklisten; Bewegungssimulation.	6	L	PA	1	1,8	1	DiplIng. B. Selonke
РК3	Maschinendynamik und Wärmetechnik	Anwendung der Thermodynamik und Strömungslehre auf energiewandelnde Aggregate und Anlagen, Anwendung der Dynamik auf komplexe Schwingungssysteme			K			8	
PK3.1	Maschinendynamik	Mehrmassenschwinger, Tilgereffekt, Kontinuumschwinger, numerische Verfahren, Schrankenverfahren, Modalanalyse und modale Modelle.	6	V + L	K60	2/1	3	4	Prof. Dr. K. Thiele
PK3.2	Wärmetechnik und Energiemanagement	Gasgemische, reale Gase, Anergie, Exergie, Reale Kreisprozesse, Dampfkraftprozesse, feuchte Luft, Wärmeübertragung, Verbrennung.	6	V	K90	3	3	4	Prof. Dr. I. Ahmed

Modul	Modul /	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen-	Credit	Dozent
	Lehrveranstaltungen						studium	Points	

Pflichtmodule der Vertiefungsrichtung Antriebs- und Fahrzeugtechnik

PA1	Fahrzeugkonzeption	Fachspezifische Vertiefung für die Analyse, Konzeption und Entwicklung von Kraftfahrzeugen, dazu müssen technische Probleme strukturiert und analysiert werden, komplexe Probleme mit Zielkonflikten gelöst werden. Dazu werden Fertigkeiten zum Umsetzen von Lösungsstrategien vermittelt.						8	
PA1.1	Fahrzeugdynamik	Längsdynamik: Fahrwiderstände, Kräfte bei Antrieb und Bremsen, Ermittlung von Fahrleistungen und Fahrgrenzen Vertikaldynamik: Schwingungen durch Straßenunebenheiten, Modelle zur Auslegung der Fahrzeugfederung und Dämpfung Kräfte Querdynamik: Kräfte bei Kurvenfahrt, Wanken	6	V	K60	2	2,3	3	Prof. Dr. V. Dorsch
PA1.2	Fahrzeugantriebe	Gesamtsystembetrachtung des Fahrzeugantriebes aus Energiespeicher, Energiewandler bis hin zur erforderlichen Antriebsleitung am Rad. Grundlagen der Antriebstechnik, spezielle Bedürfnisse des mobilen Antriebes, thermische und elektrische Antriebsmaschinen. Zusammenwirken Kennungswandler Antriebsmaschine, Energiespeichersysteme, Hybride Antriebskonzepte.	6	V	K60	2	2,3	3	Prof. Dr. V. Dorsch
PA1.3	Labor für Fahrzeug- messtechnik		6	L	R	2	1,7	2	Prof. Dr. V. Dorsch
PA2	Entwicklungs- methoden	Die Studierenden können moderne Computerprogramme zur Konstruktion und Entwicklung anwenden. Sie sind in der Lage Bauteilgruppen in CAD zu konstruieren und deren Eigenschaften mittels FEM zu überprüfen. Die Studierenden haben sich das nötige Fachwissen angeeignet. Sie können die technischen Problemstellungen analysieren, strukturieren und Formulieren. Sie sind in der Lage Lösungsstrategien zu erarbeiten und Umzusetzen. Dabei wählen Sie geeignete Methoden aus. Die Ergebnisse ihrer Arbeit können sie überzeugend darstellen.						8	
PA2.1	Finite Element Methoden (FEM)	Theoretische Grundlagen der FEM, Modellaufbau, Preprozessing, Lineare und Nichtlineare FEM-Anwendung.	6	V	K90	4	1,6	5	Prof. Dr. K. Thiele, Prof. Dr. S. Lippardt

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
PA2.2	CAD und PDM	Fortgeschrittene Modellierungstechniken (Freiformflächen und Parametrisierung); Standardteilebibliotheken; Benennung von Bauteilen und Baugruppen; Nummerierungssysteme; Produktstruktur und Stücklistenwesen; Dateistrukturen und Schnittstellen; Übergabe des CAD-Modells an FE- und CAM-Anwendungen.	6	V	PA	1	0,5	2	Prof. Dr. A. Ligocki
PA2.3	Labor für Computer Aided Engineering	Anwendung fortgeschrittener Modellierungstechniken; Arbeiten mit Konstruktionsskizzen; Umgang mit großen Baugruppen und Ansichtsmanagement; Zeichnungen von Baugruppen; Erstellen von Stücklisten; Bewegungssimulation.	6	L	PA	1	1,8	1	DiplIng. B. Selonke
PK3	Maschinendynamik und Wärmetechnik	Anwendung der Thermodynamik und Strömungslehre auf energiewandelnde Aggregate und Anlagen, Anwendung der Dynamik auf komplexe Schwingungssysteme			K			8	
PA3.1	Maschinendynamik	Mehrmassenschwinger, Tilgereffekt, Kontinuumschwinger, numerische Verfahren, Schrankenverfahren, Modalanalyse und modale Modelle.	6	V + L	K60	2/1	3	4	Prof. Dr. K. Thiele
PA3.2	Wärmetechnik und Energiemanagement	Gasgemische, reale Gase, Anergie, Exergie, Reale Kreisprozesse, Dampfkraftprozesse, feuchte Luft, Wärmeübertragung, Verbrennung.	6	V	K90	3	3	4	Prof. Dr. I. Ahmed

Modul	Modul /	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen-	Credit	Dozent
	Lehrveranstaltungen						studium	Points	

Pflichtmodule der Vertiefungsrichtung Mechatronik

PM1	Theorie mechatroni- scher Systeme	Vertiefung der systemtheoretischen Grundlagen der Mechatronik und deren praktische Anwendung						8	
PM1.1	Regelungstechnik Ver- tiefung	Beschreibung linearer Systeme im Laplace-Bereich (Übertragungsfunktion, Eigenwerte, Frequenzgang, Bode-Diagramm), rechnergestützte Optimierung von Regelkreisen durch Eigenwertplatzierung und Anwendung des Nyquist-Kriteriums	6	V + L	K90	3/1	3,4	5	Prof. X. Liu- Henke
PM1.2	Simulation	Systembegriff, Modularisierung, Abbildung von Differential- gleichung mit Hilfe eines numerischen Berechnungspro- gramm, Lineare und nichtlineare sowie zeitinvariante und zeitvariante Systeme, Integrationsverfahren, Probleme der Modellbildung, Beispiele aus dem Bereich Mechatronik	6	V + L	PA	1/1	2,3	3	Prof. Dr. R. Roskam
PM2	Informationstechnik	Angewandte Informationstechnik						8	
PM2.1	Steuerungstechnik	Signalformen, Arten von Steuerungen, Struktur einer Steuerung, Verknüpfungsglieder und Grundfunktionen, Aufbau und Arbeitsweise einer Steuerung, Programmstruktur und Programmiersprachen, Datenbausteine, Funktionen und Funktionsbausteine. Labor: Anwendung von Methoden und Softwarelösungen für Steuerungsaufgaben.	6	V+L	PA	2/1	2,9	4	DiplIng. B. Zemmiri
PM2.2	Mikrocontroller	Aufbau Mikrocontroller (CPU, Adressierung, RAM, ROM, Flash), Programmierung, Debugging, digitale und analoge HW-Schnittstelle, Interrupt, Timer, Signalgeneratoren (z.B. PWM), CAN-Bus, Aufbau einer Drehzahlregelung	6	V + L	PA	2/1	2,9	4	Prof. DrIng. R. Roskam
РМ3	Mess- und Bussyste- me	Vermittlung messtechnischer Fertigkeiten, Sensortypen und deren Anwendungsbereiche, Grundlagen der Bussysteme.						8	
PM3.1	Sensortechnik und Messdatenverarbeitung	Sensortypen, -Eigenschaften und deren Einsatzgebiete. Schaltungen zur Messwertanpassung. Operationsverstärker. Filterschaltungen. Digitale Messtechnik: Abtastung, Auflösung, Genauigkeit. Aufbau von D/A und A/D -Wandler. Software zur Messwerterfassung und zur Simulation von elektronischen Schaltungen.	6	V + L	K90	3/1	3,4	5	DrIng. D. Balan

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium		Dozent
PM3.2	Schaltungstechnik	Spannungsstabilisierung mit einer Z-Diode; Stromstabilisierung mit einem Sperrschicht-Feldeffekttransistor; Schaltverstärker und Pulsweitenmodulation (Frequenzumrichter); Stabilisierte Stromversorgungen; Optokoppler; Kfz-Sensortechnik; Kombinatorische und sequen-zielle Digitalschaltungen; Elektromagnetische Verträglichkeit.	6	V + L	K60	1/1	2,3	3	Dr. D. Balan

Modul	Modul /	Modulziel / Lerninhalte	Sem.	LV	PL	sws	Eigen-	Credit	Dozent
	Lehrveranstaltungen						studium	Points	

Pflichtmodule der Vertiefungsrichtung Produktion und Logistik

PP1	Umformen und Spa- nen	Es sollen vertiefte Kenntnisse auf den Gebieten der umformenden und spanenden Bearbeitung metallischer Werkstücke erworben werden.						8	
PP1.1	Umformtechnik	Grundlagen der Plastizitätstheorie und praktische Anwendung in der Blechumformung, Kaltmassivumformung, und Warmumformung.	6	V + L	KP (K60 +R)	2/1	3	4	Prof. Dr. M. Rambke
PP1.2	Spantechnik	Grundlagen des Spanens, Werkzeuggeometrie, Kinematik, Schneidstoffe, Beschichtungen, Werkzeugbeanspruchung, Werkzeugverschleiß, wirtschaftliche Gestaltung von Spanprozessen	6	V + L	KP (K60 +R)	2/1	3	4	Prof. Dr. H. Gerloff
PP2	Montage- und Quali- tätstechnik	Vermittlung grundlegender Kenntnisse der Handhabungs- und Montagetechnik sowie des Qualitätsmanagements in der Produktion						8	
PP2.1	Handhabungs- und Montagetechnik	Grundlagen der Handhabungs- und Montagetechnik, Zuführsysteme, Robotersysteme, Montagesysteme, Planung von Montagesystemen, Montagegerechte Produktgestaltung, Fallstudien zur Handhabungs- und Montagetechnik, Programmierübungen und Aufgaben zur Positionierung von Robotern im Labor.	6	V+ L	KP (K60 +PA)	21	3	4	Prof. Dr. H. Brüggemann
PP2.2	Qualitätsmanagement in der Produktion	QM im Wareneingang, Lieferantenbewertung, Statistische Prozessregelung, Prüfplanung, Prüfmittelüberwachung, Qualitätsaudits, Qualitätskosten, CAQ, Kontinuierliche Verbesserungsprozesse	6	V	KP (K60 +PA	2/1	3	4	Prof. Dr. H. Brüggemann
PP3	Produktionsmana- gement und Logistik	Vermittlung von Kenntnissen zur Gestaltung von planenden, steuernden und durchführenden Prozessen in Industriebe- trieben						8	
PP3.1	Produktionsplanung und -steuerung	Betriebsorganisatorische Grundlagen, Organisationsformen der Fertigung und Montage; Produktstruktur/Stückliste; Arbeitsplan; Produktionsprogrammplanung; Terminierung; Disposition; Kapazitäts-/Belastungsplanung; Abtaktung von Fertigungslinien; Auftragsveranlassung / Auftragsüberwachung; Fertigungssteuerung	6	V		2	1,7	2,5	Prof. Dr. J. Ihme

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
PP3.2	Grundlagen der Logistik	Geschichte der Logistik; Logistiksysteme: Definitionen und Zielgrößen; Logistikaufgaben; Grundlagen der Materiallogistik; Ladehilfsmittel; Lagertechnik für Stückgüter; Fördertechnik für Stückgüter (Stetig- und Unstetigförderer); Kommissioniertechnik; Verkehrs- und Umschlagtechnik	6	V	K90	2	1,7	2,5	Prof. Dr. J. Ihme
PP3.3	Betrieb von Werkzeug- maschinen	Auswahl und Beschaffung von Maschinen; Aufstellung, Anordnung, Platzbedarf und Abnahme von Werkzeugmaschinen; ergonomische Anforderungen; Emissionen von Werkzeugmaschinen; Informations- und Materialbereitstellung; Personalqualifikation; Instandhaltung und Wartung; Späneund Abfallentsorgung; Qualitätsüberwachung an Maschinen; Wirtschaftlichkeitsvergleich; Verschrottung	6	V		2	2,3	3	DiplIng. (TU) KD. Arndt

Modul	Modul /	Modulziel / Lerninhalte	Sem.	LV	PL	sws	Eigen-	Credit	Dozent
	Lehrveranstaltungen						studium	Points	

Bachelor Maschinenbau / Maschinenbau im Praxisverbund – Wahlpflichtmodule

WK1	Strömungsmaschinen	Kenntnisse über Aufbau, Auslegung und Anwendung von Strömungsmaschinen in der Energieumwandlung						8	
WK1.1	Strömungsmaschinen I	Einteilung, Stufenanordnung, Leistungen, Wirkungsgrade, Geschwindigkeitspläne, Hauptgleichung, Modellgesetze, Kennzahlen, Auslegung, Konstruktion und Betrieb hydraulischer Strömungsmaschinen und Ventilatoren	6/7	V	KP (K90 +R	3	2,8	4	Prof. Dr. F. Klinge
WK1.2	Strömungsmaschinen II	Berechnung und Konstruktion von Stufen thermischer Strömungsmaschinen, Auslegung und Aufbau von Gas- und Dampfturbinen, Axial- und Radialverdichtern, Kennfeld- und Detailversuche an hydraulischen und thermischen Strömungsmaschinen	6/7	V + L		3	2,9	4	Prof. Dr. F. Klinge
WK2	Maschinen- konstruktion	Die Studenten sollen in die Lage versetzt werden, mechanische Baugruppen auf hohem technischen Niveau zu konstruieren.						8	
WK2.1	Entwurf mechanischer Baugruppen	Techniken zur Darstellung von Entwürfen; Festlegung der Leistungsdaten neuer technischer Produkte; Prinzipien zu funktionsgerechten Gestaltung; Auswahl von Werkstoff, Halbzeugen und Herstellverfahren; Produktstrukturierung sowie Auswahl und Einsatz von Verbindungselementen; Grobdimensionierung von Bauteilen.	6/7	V	K90	2	2	3	Prof. Dr. S. Lippardt
WK2.2	Gestaltung mechanischer Baugruppen	Fertigungsgerechte Gestaltung von spanend gefertigten Bauteilen, von Konstruktionen aus Blech, von Eisen und Stahlgussteilen sowie Schweißkonstruktionen; Funktionsorientierte Auswahl von Oberflächen und Schichten; Auswahl und Dimensionierung von Gleitlagern; Betriebsfestigkeitsanalyse; Vermeidung von Schadensfällen.	6/7	V		2	1,7	2	Prof. Dr. S. Lippardt
WK2.3	Ergonomie und Industrial Design	Ergonomische und sicherheitsgerechte Gestaltung technischer Produkte; Auswahl von Mensch-Maschine-Schnittstellen und Bedienelementen; Konstruktion von Maschinengestellen und Schutzverkleidungen; Normen, Richtlinien und Abnahmen; Nutzergruppenanalyse und Diversity Management; ästhetische Farbwahl und Formgebung; Design im Hinblick auf eine Unternehmensidentität; Anwendung von CAD-Systemen zur Beurteilung des Aussehens eines neuen Produkts.	6/7	V	PA	2	2	3	Prof. Dr. A. Ligocki

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
WK3	Leichtbau und Technische Oberflächen	Fähigkeit zur Anwendung von zerstörungsfreien Prüfverfahren sowie Kenntnisse über Leichtbaukonstruktionen						8	
WK3.1	Technische Oberflächen	Tribologische Grundlagen (tribologische Systeme, Beanspruchung, Reibung, Verschleiß, Schmierung). Tribometrie und Tribomaterialien (Tribologische Mess- und Prüftechnik, Analsemethoden in der Tribologie) Technische Tribologie (Tribologie von Konstruktionselementen, Mikro-technik in der Tribologie, Tribologische Probleme in der Produktionstechnik, Werkzeugtribologie, Tribologie in Motoren und Getrieben).	6/7	V + L	KP (K60 +PA	1/1	2	3	Prof. Dr. I. Ahmed
WK3.2	Leichtbau	Belastungsgerechte Gestaltung von Baugruppen und Schweißkonstruktionen aus Leichtmetallen; dünnwandige Blechkonstruktionen; Konstruktion mit Kunststoffen und Faserverbundwerkstoffen; Einsatz von Sandwichelementen; Dimensionierung von Bauteilen in Hinblick auf Belastbarkeit und Gewicht; insbesondere Dimensionierung dünnwandiger Profile, Profilstrukturen und Schalen; Stabilität von Stäben und Balken; Zeitverhalten von Leichtbauwerkstoffen	6/7	V	K90	4	3,7	5	Prof. Dr. T. Streilein
WK1	Fahrzeugtechnik	Aufbau, Entwicklung und Verhalten von Kraftfahrzeugen; Einflussparameter der Bauteile und Aggregate verstehen, um das Verhalten des Kraftfahrzeugs zu beeinflussen						8	
WA1.1	Antrieb und Bremsen	Längsdynamik des Fahrzeugs: Fahrwiderstände, Antriebs- kennfeld, Kennfeldwandler (Kupplungen, Getriebe), Antriebs- strang, Antriebsarten insbes. Allradantrieb, Bremsen, ABS, Reifen	6/7	V + L	KP (K90 +R	3	2,9	4	Prof. Dr. V. Dorsch
WA1.2	Fahrwerktechnik	Quer- und Vertikaldynamik des Fahrzeugs: Reifen, Einspur- modell, Unter-/Übersteuern, stationäre/instationäre Manöver, Radaufhängungen mit kinematischen Kennwerten, Federung- und Dämpfung, Elastokinematik, Achsbauarten, Wanken, Fahrdynamikregelsysteme, Lenkung	6/7	V + L		3	2,9	4	Prof. Dr. V. Dorsch
WK2	Verbrennungsmotoren	Kenntnisse über Aufbau, Auslegung und Anwendung von Kolbenmaschinen und Verbrennungsmotoren						8	
WK2.1	Kolbenmaschinen	Bauarten, Kinematik, Kräfteausgleich, Ladungswechsel, Steuerung, Konstruktion	6/7	V + L	KP (K90 +R	2	2,3	3	N.N.

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
WK2.2	Verbrennungsmotoren	Kreisprozesse, Leistungen, Wirkungsgrade, Gemischbildung, Verbrennung, Aufladung, Abgasnachbehandlung, Steuerung, Kennfelder	6/7	V + L		4	3,4	5	N.N.
WM1	Mechatronische Systementwicklung	Verständnis für den mechatronischen Entwicklungsprozess und Fähigkeit zur Übertragung auf konkrete Aufgabenstellungen						8	
WM1.1	Entwicklungsprozess mechatronischer Sys- teme	Systemdekomposition, Modellierung, Zustandsautomat, Rapid-Prototyping, automatische Programmgenerierung, Integration auf Mikrocontroller, Systemtest mit Hardware-in-the-Loop, Werkzeuge für die Systementwicklung	6/7	V	PA	2	2,3	3	Prof. Dr. R. Roskam
WM1.2	Mechatronische Antrie- be	Elektrische Servoantriebe, Baugruppen für fluidische Positio- nierantriebe, Modellierung elektrischer und fluidischer Antrie- be, Regelung elektrischer und fluidischer Antriebe, Praktische Realisierung von Regelungen auf Basis von Mikrocontrollern, Systemtest mit HiL, Anwendungserprobung	6/7	V + L		3/1	3,4	5	Prof. Dr. R. Roskam
WM2	Fahrzeug-Mechatronik	Verständnis der Wirkungsweise mechatronischer Systeme in der Fahrzeugtechnik.						8	
WM2.1	Antriebsmanagement	Grundlagen des Verbrennungsmotors (Diesel- und Ottomotor), Ladungswechsel, Gemischbildung und Zündung, Direkteinspritzung, Sensorik (Drehzahl, Temperatur, Fahrpedal, Drosselklappe, Luftmasse, Klopfen, Lambda), Aktorik (Einspritzsysteme, Zündung, Drosselklappe, Aufladung, AGR), mechanische und elektrische Steuerung eines Diesel- und Ottomotors, Steuergerät, Diagnose, weitere Systeme des Antriebsmanagement. Im Labor: Modellbildung und Simulation eines Dieselmotors, Simulation der Drehzahlregelung	6/7	V + L	K90	2/1	2,9	4	Prof. Dr. R. Roskam
WM2.2	Fahrdynamik-Regelung	Längs- und Querdynamik eines Fahrzeugs, Sensoren zur Erfassung der Längs- und Querdynamik (Drehzahl, Lenkwinkel, Gierrate, Beschleunigung), Bremssystem mit Zusatzventile als Hauptaktor, Regelung ABS, Regelungskonzept ESP, Steuerung und Schnittstellen, weitere Systeme zur Beeinflussung der Fahrdynamik. Im Labor: Modellbildung und Simulation der Längsdynamik eines Fahrzeugs, Simulation einer ABS-Regelung	6/7	V + L		2/1	2,9	4	Prof. Dr. R. Roskam
WP1	Werkzeugmaschinen	Es sollen der konstruktive Aufbau von Werkzeugmaschinen und ihre Steuerung kennengelernt werden. Es soll die Fähigkeit erworben werden, Werkzeugmaschinen und ihr Verhalten im Betrieb zu untersuchen und zu beurteilen.						8	

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	sws	Eigen- studium	Credit Points	Dozent
WP1.1	Spanende Werkzeug- maschinen	Prinzipieller Aufbau, Gestellwerkstoffe, Gestellkonstruktion, Führungsarten, Haupt- und Nebenantriebe, Arbeitsgenauigkeit, statische Steifigkeit, Schwingungsverhalten, thermisches Verhalten	6/7	V +L	K90	2	1,7	2,5	Prof. Dr. H. Gerloff
WP1.2	Umformende Werk- zeugmaschinen	Prinzipieller Aufbau von Pressen und umformenden Sondermaschinen (Gestell, Führungen, Antrieb, Steuerung). Beurteilung der Maschinenkonzepte hinsichtlich ihres Einsatzes für die Verfahren Tiefziehen, Schmieden, Drücken.	6/7	V +L		2	1,7	2,5	Prof. Dr. M. Rambke
WP1.3	Steuerung von Fertigungssystemen	Speziell auf Fertigungssysteme bezogen werden folgende Themen dargestellt: Koordinatensysteme, Wegmesssyste- me, Regelkreise, Interpolationsstrategien, Überwachungs- systeme, Vernetzung	6/7	V	K60	1	1,8	2	DiplIng. G. Herrmann
WP1.4	Labor Steuerung von Fertigungssystemen	Programmierübungen an dem industrieüblichen Werkzeug- maschinenprogrammiersystem EXAPT auf PC-Basis. Opti- mierte Fertigungszeiten, optimierte Bearbeitungsschritte und Fertigungssimulation	6/7	L	PA	1	0,5	1	DiplIng. G. Herrmann
WP2	Fahrzeugproduktion	Erwerben von speziell auf den Automobil- bzw. Fahrzeugbau zugeschnittenen Kenntnissen der Werkstoffe und Fertigungstechnologien						8	
WP2.1	Blechbearbeitung im Fahrzeugbau	Tiefergehende Betrachtung der Verfahren: Tiefziehen, Innenhochdruckumformen, Presshärten, Stanzen und Feinschneiden. Einbeziehung von Simulationsverfahren im Hinblick auf den Produktentstehungsprozess.	6/7	V +L	KP (K60 +PA	2/1	2,9	4	Prof. Dr. M. Rambke
WP2.2	Kunststoffe und ihre Verarbeitung	Organische Makromoleküle und ihre Synthese durch Polymeri-sation, Polykondensation und Polyaddition; physikalische und technologische Eigenschaften von Kunststoffen; Aufbereiten von Kunststoffrohmassen; Extrudieren von Halbzeugen; Spritzgießen; Extrusionsblasformen; Pressen; Streckformen; Heizelementschweißen; Ultraschallschweißen.	6/7	V +L	KP (K60 +PA	2/1	2,9	4	Prof. Dr. I. Nielsen
WP3	Logistik und Informationstechnik	Kenntnisse in der Gestaltung der Beschaffungs- und Distributionsprozesse in Betrieben der Investitionsgüterindustrie; Unterstützung unternehmenslogistischer Prozesse mittels Informationstechnik; Simulation logistischer Prozesse						8	

Modul	Modul / Lehrveranstaltungen	Modulziel / Lerninhalte	Sem.	LV	PL	SWS	Eigen- studium	Credit Points	Dozent
WP3.1	Beschaffungs- und Dist- ributionslogistik	Grundlagen der Marketinglogistik; Bedarfsplanung; Make or Buy, Outsourcing; Materialsteuerung (Disposition); Lieferan- tenauswahl und Beschaffungsvollzug; Wareneingang; Materi- albereitstellung; Distributionssysteme und Absatzwegewahl; Verpackung und Ladungssicherung; Warenausgang; Just-in- Time-Logistik; Supply-Chain-Management	6/7	V	K90	2	1,7	2,5	Prof. Dr. J. Ihme
WP3.2	Informationssysteme der Logistik	Informationsbedarf in der Logistik; Informationssysteme: Hardware, Systemsoftware, Anwendungssoftware; Netzwerke; technische und administrative Systeme; Online-Verarbeitung (Beispiel PPS): Einsatz von Datenbanken, Zugriffsverfahren, Datenstrukturen; Integration der Informationssysteme unternehmensintern und -übergreifend; e-Business	6/7	V		2	1,7	2,5	Prof. DrIng. J. Ihme
WP3.3	Simulation in Produktion und Logistik	Grundlagen der Simulationstechnik; Digitale Fabrik, Einsatzfelder in Produktion und Logistik; Materialfluss-, Prozesssimulation, Übungen mit eM-Plant/ eM-Engineer	6/7	V +L	PA	2	2,3	3	Prof. Dr. H. Brüggemann

SWS und Selbststudium jeweils in Zeitstunden pro Woche, die Summe aus beiden ergibt den Workload der Lehrveranstaltung. Inklusive Prüfungszeitraum erstreckt sich die Lehrveranstaltung über 18 Wochen, das Semester hat insgesamt 23 Wochen: (52 Jahreswochen – 6 Wochen Tarifurlaub)/2.