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Abstract—Many time synchronization services use the 
Network Time Protocol (NTP), which resides in the upper OSI 
layers and is thus usually implemented in software. However, 
software-related runtimes reduce the synchronization accuracy 
and are further influenced by the cryptographic protection of 
time messages using the Network Time Security protocol (NTS). 
This paper examines these runtimes and shows the effects on 
popular NTP implementations. After separating these latencies 
into their components, we present different approaches for 
compensation by modifying the NTP timestamps. For non-
correctable latencies, this paper provides mitigation strategies 
to improve the synchronicity.  

Keywords—NTP, NTS, time synchronization, security, 
analysis, latencies, runtimes, compensation, correction 

I. INTRODUCTION 
Today, the number of computers and machines interacting 

with each other is ever increasing. The interconnection of 
devices enables complex processes and working operations. 
This usually requires time synchronicity between them, for 
which reason time protocols are often employed. A well-
known representative is the Network Time Protocol (NTP)  
[1] that synchronizes computer systems with a time  
server via packet-based networks. In conjunction with the  
Network Time Security protocol (NTS) [2], which is soon to 
be published as an RFC standard, NTP messages can 
additionally be protected against packet manipulation. The 
synchronization of a computer with a time server accessible 
via the Internet typically provides accuracies in the single-
digit millisecond range. If the time server is located in the  
local network, accuracies in the lower microsecond range are 
also possible, depending on the topology and the network 
load. Even higher accuracies achieves the Precision Time 
Protocol (PTP) [3], which provides a synchronicity in  
the nanosecond range. However, this requires special 
hardware support and a much higher setup effort. Therefore, 
in the local network the choice of the time protocol  
depends on the achievable accuracy as well as on the specific 
accuracy requirements. 

Nevertheless, the synchronization of the clock is affected 
by errors and subject to both deterministic and stochastic error 
sources. In particular, runtime fluctuations of NTP messages 
transmitted over the Internet lead to a reduction in 
synchronization accuracy. In the local network these are 
significantly lower, so that errors due to software-related 
delays dominate and can lead to a systematic time offset. 
Especially the cryptographic protection of the NTP packets 
has a negative effect on the accuracy, because the integrity 
protection of a message can only take place after time 
information has been written into the NTP packet. 

This paper examines the software-based latency and 
describes the composition of the individual parts. In the course 
of the paper, Chapter II first gives an overview of NTP and 
NTS, which serve as a basis for the analysis here. Chapter III 
then addresses the reasons for the asymmetric runtimes 
and focuses on the software-based share. The latencies 
occurring here are then separated and described as error terms 
for the time offset calculation in NTP. Furthermore,  
this section discusses general possibilities for the  
modification of NTP timestamps and presents solution 
approaches with the respective advantages and disadvantages. 
Afterwards we depict various measurements in Chapter IV. 
These demonstrate the achievable synchronicity of 
uncorrected NTP implementations and the magnitude of the 
software latencies. In comparison, measurements with the 
suggested correction approaches under different hardware 
conditions follow. Chapter V considers non-correctable 
software runtimes that influence the synchronicity and 
provides countermeasures for mitigation. Chapter VI 
illustrates the magnitude and consequences of software 
latencies and finally discusses the effectiveness of the 
correction mechanisms. 

II. PRELIMINARIES 
This chapter briefly describes the functionality and 

properties of the Network Time Protocol and the securing of 
the time information by using NTS. 

A. Network Time Protocol (NTP) 
When synchronizing the time of computer systems, 

packet-based time distribution protocols are typically used. 
One of the oldest and widely used mechanism for that is the 
Network Time Protocol, which was originally developed by 
D. L. Mills in 1985 [4]. In 2010, the Internet Engineering 
Taskforce (IETF) standardized the revised version 4 (NTPv4) 
as RFC 5905 [1], which is currently the latest version. 

NTP uses the connectionless transport protocol UDP  
to transmit time messages on port 123. It supports both one-
way time synchronization (broadcast) as well as two-way  
time synchronization (unicast) and is therefore very flexible.  
The established communication architecture bases on a 
hierarchical approach, whereby the individual levels are 
known as strata. The highest level, stratum 0, represents the 
time source and is typically an atomic clock or a suitable 
Global Navigation Satellite System (GNSS) receiver. Time 
servers on stratum 1 distribute that time to the next lower 
stratum 2, on which clients and also further time servers may 
be located. With increasing stratum number, the achievable 
synchronization accuracy of a client in relation to the time 
source on stratum 0 decreases. For unicast communication, the 
calculation of the time difference between client and server 



bases upon four timestamps. The client sends a request to the 
server at time T1, which is received there at time T2. After 
processing of the message, the server sends back the modified 
packet as a response at time T3 that the client receives at time 
T4 (see Fig. 1). With these four timestamps, the client can  
now calculate the Round-Trip-Time (RTT) δ (1) of the packet, 
as well as the time offset θ (2) to the server and thus adjust  
the local clock.  

 δ = (T4 – T1) – (T3 – T2) (1) 

 θ = ((T2 – T1) + (T3 – T4)) / 2 (2) 

The increasing demand for security in the recent years also 
comprises time information, for which reason NTP already 
provides two protection mechanisms. However, both of them 
are barely applied. The pre-shared key scheme in [1] uses 
symmetric encryption and is still secure. Since the keys 
between client and server must be manually configured 
upfront, this approach scales poorly. The following Autokey 
procedure [5] was intended to remedy this situation. It scaled 
significantly better, but a security analysis in 2012 [6] 
revealed serious design flaws. For this reason, most NTP 
communication is still insecure and vulnerable, today. 

B. Network Time Security (NTS) 
The malfunctioning of existing security measures for NTP 

led to the development of the Network Time Security protocol 
[2], which is about to be finalized as an RFC standard. NTS is 
a security extension for time protocols with a current focus on 
NTP. Among other features it provides authenticity, message 
integrity, unlinkability and key freshness. The communication 
structure decomposes into two main phases (see Fig. 2), which 
are implemented by different sub-protocols. 

 The first phase is for negotiating security parameters  
and the exchange of key material. The employed NTS- 
Key Establishment protocol (NTS-KE) [2] uses a TLSv1.3 
connection [7] as a basis for the encrypted transmission of 
these data. Certificates allow the client to verify the 
authenticity of the server during the TLS handshake. After 
successful negotiation, the client receives a set of cookies with 
which the time server can later check the integrity of the NTP 
requests. These cookies are also encrypted by the time server 
and contain all the information that allow the server to work 
stateless. Once the security parameters and key material have 
been exchanged, the client and server properly close the TLS 
channel and thus complete the first phase. During the second 
phase the NTP protocol is now used, which remains 
unchanged in terms of communication. The client first 
generates an NTP request packet, adds a cookie and secures 
the whole message with NTS. The NTS data are embedded in 
NTP extension fields, so no adaptation of the NTP protocol is 
necessary. After receiving the NTS-secured NTP request, the 
server decrypts the parameters contained in the cookie and 
then checks the packet for manipulation. If the message is 
intact, the server generates a response packet, adds a fresh 
cookie and secures it in the same way. After receiving the 
response, the client also checks the message, then saves the 

new cookie for future messages and uses the time information 
to synchronize the clock. If there are no more cookies left, e.g. 
due to connection errors, the first phase is repeated. 

III. ASYMMETRIES IN NTP COMMUNICATION 
This section discusses the causes of asymmetric runtimes 

in NTP and the effects on the synchronization process. The 
focus lies on the software-based delays which, after further 
decomposition, are included as error terms in the time offset 
calculation. On this basis, approaches for correction follow. 

A. Assumptions and Reality 
The Network Time Protocol contains various mechanisms 

such as selection, cluster and combine algorithms to achieve 
the best possible synchronicity. These algorithms allow NTP 
to select the best source from a bundle of several time 
references as well as the detection and exclusion of sources 
with large deviations, also known as falsetickers. In addition, 
it increases redundancy, because if a time source is lost, the 
next best one is selected. The NTP packets of a chosen NTP 
time server are subsequently processed by a clock filter 
algorithm. This algorithm uses a sliding window of eight 
packets and selects the NTP message with the lowest expected 
error for time synchronization. These are typically packets that 
have the smallest delay δ (1) and are therefore most suitable 
for synchronizing the local clock. Using the four timestamps 
of a message, NTP can now determine the time difference θ 
between client and server (2). The subsequent synchronization 
process is done in conjunction with the Clock Discipline 
algorithm to control the speed of the clock and thus avoid 
leaps by hard setting the time. That algorithm uses a software 
implemented phase locked loop (PLL) or a frequency locked 
loop (FLL) to correct phase and frequency of the local clock 
(typically a crystal oscillator). This minimizes time and 
frequency errors and stabilizes the local clock, which has to 
be continuously adjusted due to environmental influences 
(e.g. temperature changes). If errors due to network 
fluctuations dominate in NTP communication, the PLL is a 
suitable solution to stabilize the clock. In contrast, the FLL 
delivers better results with a dominant oscillator wander [8]. 

In order to achieve high synchronization accuracy, NTP 
assumes symmetrical packet runtimes. Accordingly, the 
transmission times of request and response packets must be 
identical between client and server. Furthermore, this also 
means that ideal timestamps in the NTP packet must be 
assumed (see Fig. 3), which have to be recorded when sending 
or receiving the first bit of a message. PTP defines the 
message timestamp point specifically as the beginning of the 
first symbol after the Start of Frame delimiter of an Ethernet 
frame. In contrast, this is not specified concretely in NTP.  

 
Fig. 1. Capturing of the four timestamps in NTP 

 

 
Fig. 2. Phases in NTS secured NTP communication 

 

 
Fig. 3. Assumption of ideal timestamps in NTP 

 



The Network Time Protocol is subject to various 
influences in a real environment, which lead to asymmetrical 
runtimes in the RTT (see Fig. 4) and therefore to errors in the 
time synchronization. These can be separated into three 
groups: hardware errors εHw, network errors εNet and software-
based errors εSw (3).  

 θ = θTrue + εHw + εNet + εSw (3) 

 εNet = (tRes – tReq) / 2 (4) 

 εSw = (tSw-Server – tSw-Client) / 2 (5) 

The hardware error εHw is simplified and consists of a 
stochastic error term and the clock drift. Stochastic errors are 
random faults that are caused by natural processes in the 
hardware and appear as noise. A direct correction is not 
possible, but fortunately the effects on the synchronicity are 
rather small. The drift on the other hand describes the 
continuous deviation of the local clock from an ideal time 
source. This is primarily dependent on the oscillator built into 
the hardware. The amount of the error and the stability of the 
clock is particularly linked to the accuracy class (e.g. TCXO 
or OCXO), to error tolerances in manufacturing and to aging. 
Furthermore, this error varies continuously depending on the 
surrounding temperature. The effect on the offset calculation 
is negligible, since the time drift here only affects the short 
time span T4 - T1. Moreover, NTP continuously compensates 
this error with the help of PLL and FLL and adjusts the speed 
of the local clock of the client to its time server. 

As for the second group of errors, the network error εNet 
dominates in most cases, where the NTP client synchronizes 
with a time server via the Internet. This is caused by runtime 
differences between request and response packet, which 
typically results in synchronization accuracies in the lower 
1- to 2-digit millisecond range. Such asymmetric packet 
runtimes are caused, among other things, by network load and 
the forwarding of messages over different paths. Congestion 
control and other mechanisms in switches and routers (e.g. 
store-and-forward or queuing) additionally increase the 
runtime differences in the RTT. Since NTP client and time 
server have separate clocks, which differ from each other, it is 
not possible for the client to detect such asymmetries. This 
consequently leads to an error in the time offset calculation. 
Subsequently, the resulting time offset error corresponds to 
half of the runtime difference between request and response 
packet (4). However, if the time server is located in the local 
network, the RTT is subordinate and the runtime differences 
are significantly reduced. In this case synchronization 
accuracies in the microsecond range are possible, which can 
be interesting in local networks. 

Talking about the last group of sync errors εSw, the 
differences in runtime do not only occur in the network, but 
begin with the capturing and writing of the timestamps. The 
NTP protocol is normally programmed in software and 
usually runs on a non-real-time operating system. Delays that 
occur here form a software error (see Fig. 5), which is included 
in the offset calculation in the same way as the network error 

(5). This is caused by reading the time at software level that 
serve as transmit or receive timestamps. The time between the 
recording of the transmit timestamp and the actual start of the 
data transmission on the network depends on many factors. 
These comprise the type and configuration of the operating 
system, the performance of the hardware, the quality of the 
NTP implementation and the quality of the timestamps itself. 
Though the software-based latencies on a given system remain 
approximately constant, but can differ between client and 
server, this also leads to an asymmetry of the runtimes. 
However, these do not simply result in stronger fluctuations  
in synchronization, as is normally the case with network 
errors, but rather lead to a systematic deviation. This effect is 
further amplified by the cryptographic protection of the NTP 
packets by NTS, since the time-consuming integrity 
protection can only take place after the timestamping of the 
packets. When using NTS-secured NTP in the local network, 
the software error εSw therefore dominates, as will be shown 
by the measurements in chapter III.D.2. 

B. Analysis of Software-Based Latencies 
In this section we take a closer look at the software 

runtimes and separate them into logical parts. Here we assume 
an NTS-secured NTP connection between client and server. 

1) Types of Timestamps: The point in time when the 
timestamps are taken is decisive for the magnitude of the 
software latency. In Linux environments, a distinction is made 
between hardware, kernel space and user space for the send 
and receive timestamps (see Fig. 6). The hardware timestamps 
THw are captured either on layer 1 (PHY) or layer 2 (MAC) of 
the OSI model. These offer the highest quality, as they do not 
contain any distortions due to software delays and thus 
represent almost ideal timestamps. However, this type of 
timestamping must be supported by the network interface 
being used. Most computer systems do not offer such support, 
which is why this type of timestamping is rarely employed  
in NTP. In such cases, kernel space timestamps TSo are  
used, which the operating system generates at the driver level 
and are also known as (software-) socket timestamps. 
Unfortunately, these are affected by runtimes of the 
underlying network layer and distorted with delays of the 
operating system. Typically, NTP implementations use this 
type of timestamping when receiving NTP response 
messages, because it provides the best accuracy on a software-
level. A direct use of the kernel space timestamp as a transmit 
timestamp is not possible in NTP, because it can only be read 
after sending the messages. For this reason, user space 
timestamps TUsr are used, which unfortunately provide the 
least accuracy in the context of time synchronization. This 
type of software timestamps is taken directly in the NTP 
implementation and is therefore subject to many effects and 
delays of the operating system. Compared to ideal transmit 
timestamps, user space timestamps additionally contain the 
runtimes of the hardware, the network layers (OSI level 1-4), 
the NTP implementation as well as the NTS processing times.  

 
Fig. 4. Different runtimes of NTP messages lead to an asymmetry 

 

 
Fig. 5. Asymmetric runtimes within the devices due to the software 

 



2) NTP Latencies: The software latency begins with the 
readout of the clock, which serves as the transmit timestamp 
T1-Usr for the client side and T3-Usr for the server side. To 
perform this, the NTP implementation calls a system 
Application Programming Interface (API) function (e.g. 
clock_gettime) that already causes initial delays due to 
runtimes of the operation system. The returned time is then 
converted to the NTP timestamp format and written to the 
packet. The runtimes up to this point are depicted in Fig. 6 as 
tNTP-A. If this message is to be secured, NTP executes the NTS 
protocol at this point, which will be discussed in the next 
section. Afterwards, the finalization of the NTP message now 
follows, where the embedding of the NTS checksum or the 
padding of the NTP packet takes place. The durations for these 
actions form the term tNTP-B. Finally, the magnitude of these 
NTP latencies depends mainly on the implementation quality, 
possible additional mechanisms (e.g. logging features) as well 
as on the performance of the hardware. Since the procedure 
for the construction of NTP packets usually does not change, 
an almost constant delay can be assumed. 

3) NTS Latencies: Further delays are caused by the 
Network Time Security protocol due to the cryptographic 
protection of the NTP packet (tNTS). In addition to general 
delays inducted by the individual implementation of the NTS 
protocol, the duration of the security process depends on four 
substantial factors. 

The first factor is the amount of data to be secured. Besides 
the header, each protected NTP packet contains additional 
NTS contents, which NTP embeds in the form of extension 
fields. With a stable connection between client and server, an 
NTP message contains exactly one NTS cookie. In case 
messages are lost, the client requests up to eight cookies from 
its server that can be transported in a single NTP message. 
Moreover, the size of the cookies depends on the structure  
of the information they contain and the cryptographic 
algorithm used. The amount of data to be secured by NTS  
is therefore in a discrete range of 188 to 1428 octets (NTP  
header + extension fields). 

The second factor is the Authenticated-Encryption- 
with-Associated-Data-Algorithm (AEAD) used to protect  
the packets. According to the specification, NTS supports at 
least the AES-based AEAD_AES_SIV_CMAC_256 (AEAD-
256) algorithm [9]. In addition to the 256-bit variant, the  
bit lengths 384 and 512 are usually also available in  
NTS implementations. Although a higher bit length increases 
security, it also requires more time to secure the data.  
Beyond this, the choice of crypto-library (e.g. OpenSSL) 
influences the resulting runtimes too.  

The third factor refers to an essential property of the 
AEAD algorithms. In addition to providing integrity 
protection, these allow the optional encryption of data. While 
the client only generates the integrity checksum of the NTP 
request packet, the server additionally utilizes the encryption 
mechanism to transmit new cookies read-protected to the 
requesting client. However, the encryption needs more time, 
so that the processing of the same amount of data takes longer 
compared to the generation of a pure integrity protection. 
Even with equivalent hardware performance between client 
and server and identical size of the NTP request and response 
packets, this already leads to asymmetric runtimes. 

The last factor is the performance of the hardware, which 
has a great impact on the duration of the NTS securing 
process. Embedded computer systems are mostly designed for 
low-power applications and often use less powerful 
processors. In contrast, desktop PCs or server systems are in 
the high-performance segment and mostly provide both a 
faster CPU and AES hardware acceleration for cryptographic 
operations. A difference in performance between client  
and server thus may increase the asymmetry in the RTT  
and may have a massive influence on the achievable 
synchronization accuracy. 

4) Network Driver Latencies: Additional delays occur 
when sending (tTX) and receiving (tRX) NTP messages, which 
correspond to the time span between kernel space TSo and 
hardware timestamp THw. The magnitude of these latencies is 
also highly dependent on the device driver. Here, the driver 
captures the transmission timestamps T1-So and T3-So in the 
kernel space immediately before the data is transferred to  
the hardware. At this point, the NTP packet is already 
equipped with the UDP and IP header. On the other side, the 
driver also takes the receive timestamps T2-So and T4-So after  
the registration of incoming data, which the hardware 
usually announces to the operating system via an interrupt 
request (IRQ). 

C. Error Characterization in the Time Offset Calculation 
Having determined the different pieces of the software 

runtimes, we now can extend the time offset calculation from 
(2). As we said in the beginning of III.B we can omit εHw and 
concentrate on the communication in the local network 
disregarding εNet. So (3) simplifies to (6) containing only the 
software error εSw. 

 θ = θTrue + εSw (6) 

We first separate the software error εSw from the time 
offset calculation, since NTP is unable to detect asymmetric 
runtimes and thus assumes ideal timestamps. The timestamps 

 
Fig. 6. Detailed composition of the software runtimes 

 



of the NTP messages T1, T2, T3 and T4 must therefore be 
extended by the software runtimes ∆T1, ∆T2, ∆T3 and ∆T4 to 
represent the actual transmit and receive timestamps TTrue. 
According to Fig. 6, the software delays must be subtracted 
from the transmit timestamps and added to the receive ones: 

 T1 = T1-True – ∆T1 (7) 

 T2 = T2-True + ∆T2 (8) 

 T3 = T3-True – ∆T3 (9) 

 T4 = T4-True + ∆T4 (10) 

By using (7) to (10) in the time offset calculation (2) and 
separating the timestamps from the latencies, the terms known 
from (6) are obtained (11): 

 (11) 

Next we consider εSw, which can be further divided into 
correctable and non-correctable error terms (12):  

 εSw = εPacket + εSocket (12) 

The correctable error term εPacket covers the error 
introduced by the time spans at client and server between user 
space timestamp TUsr and socket timestamp TSo, which are 
measurable by NTP. It contains all NTP and NTS latencies 
that occur after timestamping to secure and finalize the NTP 
packet and results in the respective total runtime tPacket (13): 

 tPacket = tNTP-A + tNTS + tNTP-B (13) 

The non-correctable error term εSocket comprises the error 
introduced by the time spans at client and server between 
socket timestamp TSo and hardware timestamp THw and 
contains the latencies of the lower network layers. This 
primarily covers the delays caused by the network driver and 
the operating system when sending (tTX) or receiving (tRX) NTP 
packets. The missing correction possibility is due to the fact 
that most systems have no support of hardware timestamping 
and therefore the magnitude of the error term is unknown.  
Of course, if hardware timestamping is available, this value 
can be corrected. 

In the following step, we now replace the generic software 
delays ∆T1, ∆T2, ∆T3 and ∆T4 with the specific runtime 
components. According to Fig. 6, the transmission delays ∆T1 
and ∆T3 comprise the terms tPacket and tTX, while the reception 
delays ∆T2 and ∆T4 only consist of tRX. The indices '-C' and  
'-S' represent the client and server side respectively: 

 ∆T1 = tPacket-C + tTX-C (14) 

 ∆T2 = tRX-S (15) 

 ∆T3 = tPacket-S + tTX-S (16) 

 ∆T4 = tRX-C (17) 

After using (14) to (17) in (11) and sorting the terms, the 
software error εSw in (12) expands as follows (18): 

 (18) 

Now we have completely determined the error terms so 
that the time offset calculation can be described like this (19): 

 θ = θTrue + εPacket + εSocket (19) 

The true offset θTrue is only achievable if the error terms 
cancel each other out or are reduced to zero. This is possible 
with the term εPacket, as it is measurable and can be 
compensated by the usage of a suitable correction method. 
Since εSocket is not determinable in most cases, the hardware 
and software conditions of client and server must be identical 
in order to eliminate this error. With identical hardware, the 
socket runtimes cancel each other out, so that only low jitter 
is to be expected. In conjunction with the εPacket correction an 
almost flawless offset should be achievable. However, if the 
hardware and software of the client and server differ, then 
εSocket will dominate the error. 

D. Suggestions for Correction 
In this section we describe different approaches to 

compensate the error term εPacket defined in III.C. In order to 
do this, we start with the general possibilities the client and the 
server have. Subsequently, concrete solutions will follow, 
whose advantages and disadvantages will be compared. 

1) General approaches for client and server: The 
correction of the time offset calculation can be handled in NTP 
by the direct modification of the NTP message timestamps. 
Under the assumption that hardware timestamps are not 
available, the correction is limited to the runtime tPacket (13), 
which only occurs in the transmission paths on client and 
server side. Consequently, the NTP timestamps T1 and T3 must 
be corrected by the respective runtime tPacket to achieve the 
accuracy of T1-So and T3-So (see Fig. 6). 

The transmission latencies of the client can be corrected 
by three methods. In the first one, the client measures the time 
span T1-So - T1-Usr, which equals the runtime tPacket-C. T1-Usr is the 
NTP message timestamp T1, while T1-So can be queried by the 
operating system after the packet has been sent. The client 
stores this duration and can correct the packet after receiving 
the response by adding tPacket-C to T1 (20): 

 T1-Corrected = T1 + tPacket-C (20) 

The second method is similar to the first one, except that 
the message timestamp T2 is adjusted instead of T1. In order to 
calculate the same time offset, only tPacket-C has to be subtracted 
from T2, while T1 remains unchanged. This can be useful if 
NTS should correct the message timestamps instead of NTP. 
Since NTP implementations can apply the Data Minimization 
[10], the T1 timestamp in the NTP packet could contain 
random data so that only NTP knows the transmit timestamp 
T1. Therefore, the T2 correction is the only possibility here. 
The third and recommended method is the direct use  
of T1-So, which is taken instead of T1 (= T1-Usr) after receiving 
the NTP response. 

On the server side, corrections are more difficult to 
implement. The transmit timestamp T3-So of the NTP response 
is of course only available after sending and can therefore not 
be written into the NTP packet beforehand. The latency tPacket-S 
caused by NTP and NTS is also only known after the securing 
process. The message timestamp T3 can therefore not be 
corrected by the measured runtimes, otherwise the integrity 
protection would be lost. The following sections describe in 
detail how the server can proceed. 



2) Direct Timestamp Correction on Server Side: With this 
method, the client and server modify their respective 
timestamps independently of each other. The NTP server tries 
to achieve the best possible compensation by correcting the 
message timestamp T3 for server side latencies (tPacket-S). Since 
this can only be done before the message securing by NTS, 
the value must be estimated. However, a simple average over 
the processing time of NTP packets is not sufficient, since the 
message sizes and the AEAD algorithms used can vary for 
each NTP packet. Additionally, outliers affect the average 
value, too. Because the server can operate with a large number 
of clients, load differences can also lead to different latencies 
and thus additionally distort a simple average value. 

A better alternative is the use of a look-up table, in which 
the averaged latencies for different configurations are stored 
(see Table I). A simple table can thus be created on the basis 
of the specific packet size and the AEAD algorithm used.  
In NTS, secured NTP messages typically have up to eight 
packet sizes, depending on the number of cookies they 
contain. If we use the three possible bit lengths of the AEAD  
algorithm defined in NTS, the table thus contains 24 cells for 
secured messages and one additional cell for unsecured NTP 
messages. The size of this table can be extended to cover 
additional cases. Several tables can also be deployed 
depending on other factors (e.g. system load or temperature). 
The value of each cell is calculated by a moving median that 
fits the corresponding configuration (packet size and AEAD 
algorithm). Furthermore, the window size should depend on a 
defined time interval, since the number of NTP requests per 
second can strongly vary. The window size should be 
sufficiently small to be able to react quickly to runtime 
changes and also large enough to be robust against individual 
outliers. To minimize excessive loads, servers with a large 
number of clients should limit table updates. For this reason, 
the respective cells should not be updated more frequently 
than e.g. 10 times per second (depending on table size and the 
specific application). Servers should also save these tables 
periodically in order to reuse these values when the NTP 
service is restarted. If the values are not available, the latency 
of generated dummy packets might be measured at the 
program start-up to obtain initial values. 

With this correction method, the server remains stateless 
and is able to apply correction values for different NTP 
packets while keeping the memory usage low. These packets 
are not changed in size and thus do not constitute an attack 
potential for a possible amplification Denial of Service (DoS). 
However, the disadvantage is that the client is not informed of 
a possible T3 modification. If the client does not perform a T1 
correction, the asymmetries can even increase, because tPacket-S 
equals zero and εPacket becomes larger (see (18)). Moreover, 
even if a client is aware of these corrections, it cannot reverse 
them if it is unable to correct its T1 due to local limitations. 

A possible remedy is to transmit a correction information 
flag. With NTS-secured NTP, client and server can negotiate 
the activation of the T3 correction during the NTS-KE phase. 
This information can then be encoded in the cookies so that 
the server can decide individually for each client on the use of 
the correction values. Alternatively, the server can at least 
publish whether it corrects or not. 

3) Sending a Correction Value via EF: A modified variant 
is the use of NTP extension fields. The process is mostly 
identical to the direct adaptation from III.D.2. However, the 
server does not change the timestamp T3 directly, but transmits 
this correction value to the client via an additional NTP 
extension field. In order for this value to be protected,  
the extension field must be embedded in NTP before NTS 
performs its integrity protection. The advantage of this method 
is that the timestamp correction can be applied by the client. It 
can decide for itself whether a correction should be applied or 
not. A negotiation between client and server is therefore not 
necessary. However, a disadvantage is the slightly higher NTP 
packet size of about 20 octets for the additional data. To 
prevent amplification DoS attacks, the client must also send 
such an extension field with empty content to the server so that 
the request and response packets have the same size. If such 
an extension field is not contained in the request, the server 
can assume that the client does not need correction data and 
does not insert any correction data in the response message. 

4) Follow-up / Interleaved Model: A complete correction 
on the server side is only possible if it communicates the actual 
software latency tPacket-S or the transmission timestamp T3-So to 
the client. However, this is only feasible if the designed NTP 
communication structure is slightly modified. The first 
possibility for this would be the establishment of a follow-up 
message, which is sent immediately after an outgoing NTP 
packet. NTS-secured NTP messages lead to further changes to 
avoid the need to apply integrity protection to both messages 
(NTP and follow-up). A possible solution for this is the 
unsecured transmission of the NTP response from the server 
to the client, which contains the distorted T3 by the tPacket-S 
runtimes. The subsequent follow-up message contains a copy 
of the previously sent NTP packet and its socket timestamp 
T3-So. In addition, the follow-up message must be secured with 
NTS to prevent packet manipulation. Upon receipt of both 
messages, the client can check the follow-up message for 
integrity and then compare the contents of the NTP packets. If 
they match, the NTP packet and the separately transmitted 
T3-So timestamp can be used for the time offset calculation 
instead of T3. If one of the messages is missing or the contents 
do not match, the client discards these packets. With this 
method, vulnerability through amplification attacks must also 
be taken into account. To counteract this, the request packets 
of the client must be enlarged accordingly. This again results 
in the fact that clients may request fewer cookies in case of 
message loss, in order not to exceed the maximum 
transmission unit (MTU) size of the network. 

Another approach similar to the follow-up principle is the 
interleaved mode. This was originally defined in RFC 5905 
[1] as symmetric mode to keep servers on the same stratum 
synchronous. An IETF draft document [11] also proposes this 
principle for the NTP unicast mode in order to transmit the 
T3-So timestamp. With this approach, some timestamp fields in 
NTP are handled differently. However, compatibility with 
NTP clients and servers without interleaved mode is 
maintained. An NTP client in interleaved mode additionally 
transfers the faulty T3 timestamp from a previous response 
packet in the request message. Using this T3 timestamp in 
combination with the IP address of the client, the server can 
retrieve the stored T3-So timestamp from the previous message 
and also embed it in the NTP packet. The NTP response 
packet therefore contains the distorted T3 timestamp of the 
current message and the T3-So of the previous packet. This 
procedure does not require follow-up messages or extension 

TABLE I.              EXAMPLE OF A LOOK-UP TABLE 

Packet Size AEAD-256 AEAD-384 AEAD-512 
188 octets 20.4 µs 22.5 µs … 
292 octets 24.1 µs 27.3 µs … 

… … … … 

 



fields and is also compatible with NTS. However, the server 
must be stateful for this to work. With a large number of 
clients, this could place an additional load on the server as the 
memory requirement increases. Depending on the request 
interval, the clock drift may also have to be taken into account. 

IV. MEASUREMENTS 
In this section, the presented correction mechanisms are 

now applied to measure their effects on the synchronization 
accuracy. For this purpose, uncompensated NTP devices were 
first used as a reference in a measurement setup and then 
extended by the correction mechanisms. 

A. Uncorrected NTS-secured NTP Synchronization 
This first part of the measurements without any timestamp 

correction examines the synchronicity of NTS-secured NTP 
communications in an ideal network. We measured the NTS 
runtimes tNTS, the software latencies tPacket as well as the 
systematic time offset between client and server. 

1) Securing Duration of the AEAD Algorithms: The NTS 
latencies tNTS consist almost completely of the runtimes that 
arise during the cryptographic protection of an NTP packet. 
Therefore, the first series of measurements focused on the 
AEAD processing times including the necessary allocation 
and freeing of memory. For this purpose, each NTP  
message was equipped with one to a maximum of eight 
cookies and then processed with the respective AEAD 
algorithm. The number of cookies is defined by the client with 
its requests. Since the cookie size and the associated NTP 
message size depend on the applied AEAD algorithm, there 
are typically 24 possible packet sizes as described in III.D.2. 
The measurements with a free AEAD library [12] based on 
OpenSSL 1.1.1b [13] were run on several Linux machines. 
The hardware platforms varied from a weak Raspberry Pi 1 to 
a powerful desktop PC. As typical for NTS, the request 
packets only provided integrity protection, while the response 
NTP packets also contained encrypted message parts. 

Table II shows examples of the duration of the securing 
process of the NTP packets both at the client and at the server. 
The configurations are based on the standard case where the 
AEAD-256 algorithm is used and NTP packets contain one 
cookie. The amount of data to be secured thus amounts to 188 
octets (NTP headers + NTS content). Due to the additional 
encryption, the duration of the process on the server side 
increases by about 15% in comparison to the client. The 
performance of the hardware has a strong influence here, as 
Table III illustrates. It shows the minimum and maximum 
values on different devices for the typical bit lengths of the 
AEAD algorithm supported in NTS. Minimum values refer to 
the client side, in which 188 octets are to be secured and 
correspond to NTP messages with a single cookie. Maximum 
values, on the other hand, are on the server side and contain a 
data set of 1428 octets that corresponds to eight cookies. The 
duration of the NTS protection is proportional to the amount 
of data and the AEAD algorithm used, as shown in the 

measurement series on the Meinberg microSyncRX in Fig. 7. 
However, the durations for a fixed AEAD algorithm and a 
fixed number of cookies are almost constant for a given 
computer system. 

2) Correctable Software-based Latencies: The measuring 
of the software latency tPacket is simple and starts with the 
acquisition of the transmit timestamp in the NTP 
implementation. On the client side, this corresponds to the 
timestamp T1-Usr, which NTP queries via an API function in 
the user space and then writes into the NTP request message. 
The actual transmission process of the message defines the 
end of the measurement. Since hardware timestamps are not 
available in most cases, socket timestamps are usually used. 
Chapter V describes the consequences of this action in more 
details. The resulting software latency is now the difference 
between the TX socket timestamp T1-So and T1-Usr. 

Fig. 8 shows the results of an NTP server on a Raspberry 
Pi 3B. This server communicates with several clients and thus 
allows the observation of latency under different load 
conditions. For the measurement, the NTP clients and the time 
server were using an NTS-capable NTP implementation of the 
Ostfalia University (NTP-O). All clients communicated NTS-
secured with the AEAD-256 algorithm and exactly one cookie 
per NTP message. The request frequency of the clients was set 
to 8 seconds. The results show an average software latency of 
97 µs on the server when communicating with a single client. 
Each point represents the measured latency of an NTP 
response message. Due to background processes of the 
operating system, the measured values fluctuate by about 9 µs. 
If the server is loaded with several clients, the software latency 
decreases and settles down to 62 µs for 20 or more clients. In 
Fig. 8 this effect is visible after 3000s, where the number of 
clients was increased to 100 and later reset to 1. The results in 
a histogram (see Fig. 9) show a significantly lower dispersion 
when the server is loaded with 100 clients. However, this 

TABLE III.       DURATION OF THE SECURING PROCESS (MIN/MAX VALUES) 

 AEAD-256 
(µs) 

AEAD-384 
(µs) 

AEAD-512 
(µs) 

Raspberry Pi 1 87 / 224 95 / 294 101 / 360 
Raspberry Pi 3B 20 / 64 22 / 86 25 / 111 
Meinberg microSyncRX 27 / 82 29 / 112 33 / 149 
Desktop PC w/o AES-NI 1.8 / 8.3 2.2 / 11.7 2.6 / 16.0 
Desktop PC w/ AES-NI 1.0 / 1.8 1.1 / 2.2 1.1 / 2.8 

 

 
Fig. 8. Software latency tPacket on a Raspberry Pi 3 server at low and high 

workload 

 

 
Fig. 7. Securing time of NTP packets (tNTS) based on the number of cookies 

included and the AEAD bit length. 

 
TABLE II.      TYPICAL  DURATION OF THE SECURING PROCESS USING NTS 

 Client 
(µs) 

Server 
(µs) 

Raspberry Pi 1 87 101 
Raspberry Pi 3B 20 24 
Meinberg microSyncRX 27 31 
Desktop PC (i7-6700) w/o AES-NI 1.8 2.4 
Desktop PC (i7-6700) w/ AES-NI 1.0 1.1 

 



behavior only occurred with Raspberry Pis during the 
measurements. The reason for this is an increased process 
priority. Further measurements on other hardware platforms 
resulted in mean latencies of 170µs on a Meinberg 
microSyncRX and 53µs on a desktop PC (i7-6700). 

3) Systematic Time Offset: The influence of the complete 
software latencies including tTX/tRX on synchronization 
accuracy has been measured for the most popular NTP 
implementations. These include NTPd, NTPsec, Chrony and 
NTP-O, most of them with NTS support. During the 
measurement series, all implementations were tested against 
each other, both unsecured and NTS secured (if possible). 
Furthermore, all tests were performed on different hardware 
platforms and varied among each other. Like the measurement 
of the software latencies, Raspberry Pi 3B devices, desktop 
PCs (i7-6700) and Meinberg microSyncRX devices were used. 
Furthermore, the devices were connected directly via Ethernet 
during the measurements to ensure ideal network conditions. 
The measurement of the actual time offset between client and 
server can no longer be reliably determined by a pure software 
solution. For this reason, a hardware-controlled measuring 
system was applied, which enabled the simultaneous time 
measurement of the connected devices and limited the 
measurement error. This made it possible to determine  
the actual time deviation between the devices, with an 
uncertainty of 1µs.  

The evaluation of the measurement data revealed 
systematic deviations in all NTP implementations, which 
amounted to up to 85 µs depending on the constellation. 
Especially the communication of different NTP services, the 
use of NTS-secured NTP or large differences in hardware 
performance between client and server had a negative effect 
on the synchronization accuracy. But even in configurations 
with identical hardware and software, systematic deviations  
of up to 50µs occurred. Fig. 10 shows an example of a 
measurement recording taken by a client that synchronized 
itself NTS-secured with a time server. Both client and server 
used an adapted NTP-O on Raspberry Pi devices and were 
connected directly via Ethernet, like in the other tests. The 
packet offset (grey line) in the diagram shows the time offset 
θNTP of all received NTP messages calculated by the NTP. 
After processing these data by the clock filter algorithm, the 

NTP messages with the least error are used for time 
synchronization (green line). Based on the calculated time 
offset θNTP, NTP adjusts the local clock, whereby the course 
slowly approaches zero. However, the actual time offset θTrue 
(red line) measured by the hardware shows a systematic offset 
of about 62 µs (= actual offset - filtered packet offset), which 
NTP cannot detect due to asymmetric software runtimes. The 
asymmetry in this measurement was caused by slightly higher 
runtimes in the client implementation. The additional load of 
the server with a total amount of 100 clients further decreases 
the synchronization accuracy. Based on the measured values 
on different hardware platforms and NTP implementations, it 
can be confirmed that NTS-secured NTP synchronization has 
barely any influence on synchronization accuracy when the 
time server is reached via the Internet and therefore the 
network influences dominate. However, in the local network 
these software latencies have a significant influence.  

B. Applying the Correction Mechanisms 
In the following measurements, the correction methods 

were applied to NTS-secured NTP connections. For this 
purpose, NTP-O was extended by two correction methods. 
The first one is the transmission of the correction value from 
the server to the client (see III.D.3), the second one is the 
interleaved mode (see III.D.4). 

1) Identical Hardware on Client and Server: If both the 
hardware and software conditions on the client and server  
side are identical, then the full compensation of the software 
latency is almost possible. In this case the error term εSocket 
becomes zero (see III.C). The hardware setup used here 
corresponds to the procedure from IV.A.3 and uses  
Raspberry Pis 3B on both sides. While the NTS-secured time 
synchronization without a compensation mechanism shows a 
systematic time offset of 62µs (see Fig. 10), the usage of the 
correction value approach reduces it to about 2µs (see Fig. 11). 
The use of the interleaved approach achieves similarly low 
values of 1µs. Both compensation methods also stabilized the 
calculation of the time offset in NTP. An additional load on 
the server side with a total number of 100 clients had no 
impact on synchronicity despite fluctuating server latencies. 

 
Fig. 9. Histogram of the software latency tPacket of the server (Raspberry  

Pi 3B) at low and high workload 

 

 
Fig. 10. Systematic time offset (θTrue - θNTP) of a synchronized NTS-secured 

NTP-O client with changing server load. 

 

 
Fig. 11. Systematic time offset of an NTS-secured NTP-O client with 

changing server load and activated tPacket compensation (see III.D.3) 

 

 
Fig. 12. Effects of hardware differences between client and server on 

synchronicity with active compensation. 

 



2) Different Hardware on Client and Server: If the 
hardware platforms vary between client and server, the 
compensation of the tPacket runtimes in most cases does not lead 
to a significant reduction of the systematic time deviation and 
may even increase it. Especially the performance differences 
of the hardware have a significant influence on the amount of 
the systematic deviation. Fig. 12 demonstrates the effect 
where the Raspberry Pi server used in IV.B.1 was replaced by 
a desktop PC. Despite εPacket compensation, the deviation for 
both correction approaches is 61µs for NTS-secured 
connections and 51µs for unsecured NTP connections. 
Without a correction mechanism, these values are 19µs for 
NTS-secured NTP and 41µs for unsecured NTP. The reason 
for this are the software runtimes between socket timestamp 
and hardware timestamp that now differ for client and server. 
In this measurement, the compensation of εPacket led to an 
increase in asymmetry, since the error terms described in 
III.C, which have different signs here, do not cancel each  
other out anymore (see (18)). The difference of 10µs  
between unsecured and NTS-secured NTP with active 
compensation is solely due to the different packet size of 140 
octets. As a consequence of the larger messages, the runtimes 
in tTX and tRX increase. In contrast, the variation of the  
tPacket latencies have no longer a negative influence on  
the synchronization accuracy. 

V. MITIGATION OF SOCKET RUNTIMES  
As could be shown, the latencies in the kernel and driver 

functions have a significant effect on synchronicity and cannot 
be easily corrected. The magnitude of these latencies varies 
not only due to the hardware, but also due to the operating 
system and the drivers installed on it. However, the handling 
of the paths for TX and RX are different, which favors an 
asymmetry in the runtimes. For the TX path, these runtimes 
are usually shorter, since the transmission process is started by 
calling the corresponding API function within NTP. This 
means that the data is processed immediately in the individual 
layers and then sent out to the network (see Fig. 13). The 
transmit timestamp is recorded directly before the data is 
written to the TX buffer. On the other hand, the RX path is 
usually subject to higher runtimes due to the event that signals 
the operating system about received data. This can be done 
both traditionally via interrupt requests and via New API 
(NAPI). With NAPI no interrupts are used, but the kernel 
periodically checks for incoming packets (polling) without 
being interrupted. While this eliminates the overhead of 
interrupt processing and thus reduces CPU load, it also 
increases the tRX latency. In this path, the RX socket 
timestamping takes place during IRQ handling or after the 
polling process via NAPI. 

Fig. 14 shows the tTX and tRX latencies on the desktop PC 
used in IV.B.1, which supports hardware timestamping and 
thus allows the measurement of the delays between socket 
timestamp TSo and hardware timestamp THw. With 45µs for tTX 
and 237µs for tRX, the values here are significantly higher than 
the delay times due to NTP and NTS (tPacket). Since these 
amounts usually differ between client and server depending 
on the hardware, this leads to the systematic time deviation 
measured in IV.B.2.  

On Linux there are several ways to affect the tTX/tRX 
delays. The first option is the power management setting. The 
CPU frequency scaling can be governed, among others, to run 
the processor at its maximum frequency (performance), at its 
minimum frequency (powersave) or to dynamically adjust its 
frequency depending on the load (ondemand). For identical 
operations (e.g. packet securing with NTS) this can lead to 
small runtime fluctuations and also influence the socket 
timestamps. To minimize the jitter, the CPU can be run in 
performance mode. The second way is the activation of the 
SO_BUSY_POLL (busy-poll) option in the socket settings. To 
achieve a low latency this method significantly reduces the 
polling interval for new data in the RX buffer. However, as 
this process increases the load on the CPU, NTP clients should 
define a timeout for this method. Since the NTP response 
usually arrives at the client in less than 200ms after sending 
the request, a suitable timeout can be specified to deactivate 
the busy-poll option after the timeout has elapsed.   

The measurements show that the busy-poll activation 
greatly reduces the tRX latency and now achieves 25µs (see 
Fig. 15). An additional activation of performance mode did 
not result in further improvements and even increased the tRX 
latency to 290µs when busy-poll was not activated. The tTX 
latency remained constant at 45µs for all measurements and 
configurations. With activated busy-poll and interleaved 
compensation on client (Raspberry Pi) and server (desktop 
PC), the systematic time offset decreased slightly. For 
unprotected NTP it was now 43µs and 50µs for NTS-
protected NTP.  

Further correction possibilities are hardly feasible and 
require increased effort or additional hardware features. One 
idea to mitigate the tTX latency, would be the use of a Network 
Interface Card (NIC) with launch time support (e.g. Intel 
i210). This allows the socket functions to explicitly define a 
transmission time. However, the successful transmission at 
the defined point in time highly depends on the network load. 
Furthermore, the RX runtimes remain untouched, so that a 

 
Fig. 13. Transmission (TX) and reception (RX) paths of the operating 

system for network communication. 

 

 
Fig. 15. Socket latencies (tTX, tRX) on a desktop PC with active busy-poll 

 

 
Fig. 14. Socket latencies (tTX, tRX) on a desktop PC without optimizations 

 



slight reduction in asymmetry is only possible if client  
and server use this method. In order to neutralize the runtimes 
tRX and tTX, hardware timestamps at both the client and  
the server are therefore absolutely necessary. However, a  
one-sided use of the hardware timestamps on the server  
side leads to a greater asymmetry, especially with low-
performance clients, since the socket runtimes no longer 
cancel each other out (see (18)). 

VI. CONCLUSIONS 
The result of the correction approaches presented here 

illustrates that an improvement of the synchronicity between 
client and server is quite possible. Under identical hardware 
and software conditions, systematic deviations of up to 85µs 
in local network context could be reduced to almost zero, more 
or less independent of the compensation method used. The 
introduced compensation method of direct timestamp 
correction on the server side or the use of an NTP extension 
field, both using values from a table of median values fitting 
the message properties leaves the server stateless giving it a 
vital advantage over the other approaches. The client easily 
can compensate its share by saving the socket timestamp when 
the packet is handed over to the driver buffer and using this 
value as sending timestamp in its offset calculation. 

However, the measurements also confirmed the statement 
given in the analysis, that in the case of considerable 
performance differences between client and server, the 
directly non-measurable runtimes in the lower network layers 
dominate in a local network. So, perfect synchronicity is only 
achievable with hardware timestamps. Nevertheless, these 
must be supported and used by client and server in order to 
eliminate software latencies completely. Even in that case, one 
of the compensation methods is necessary with NTS secured 
NTP as the timestamps have to be packed into the NTP 
message before any cryptographic operation takes place. 

In any constellation with or without hardware 
timestamping, any offset degradation caused by NTS securing 
can easily be compensated, thus annihilating any arguments 
against using NTS, today. 
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