

The following article is the final version submitted to IEEE after peer review; hosted by Ostfalia

University of Applied Sciences. It is provided for personal use only.

Analysis and Compensation of Latencies in NTS-secured NTP Time

Synchronization

Martin Langer, Kai Heine, Dieter Sibold and Rainer Bermbach

© 2020 IEEE. This is the author’s version of an article that has been published by IEEE.

Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

Full Citation of the original article published by IEEE:

M. Langer, K. Heine, R. Bermbach and D. Sibold, "Analysis and Compensation of Latencies in NTS-

secured NTP Time Synchronization," 2020 Joint Conference of the IEEE International Frequency Control

Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, CO,

USA, 2020, pp. 1-10, doi: 10.1109/IFCS-ISAF41089.2020.9234871.

Available at:

https://doi.org/10.1109/IFCS-ISAF41089.2020.9234871

 Analysis and Compensation of Latencies in
NTS-secured NTP Time Synchronization

Martin Langer
Ostfalia University of

Applied Sciences
Wolfenbüttel, Germany
mart.langer@ostfalia.de

Kai Heine
Ostfalia University of

Applied Sciences
Wolfenbüttel, Germany

ka.heine@ostfalia.de

Rainer Bermbach
Ostfalia University of

Applied Sciences
Wolfenbüttel, Germany
r.bermbach@ostfalia.de

Dieter Sibold
Physikalisch-Technische

Bundesanstalt
Braunschweig, Germany

dieter.sibold@ptb.de

Abstract—Many time synchronization services use the
Network Time Protocol (NTP), which resides in the upper OSI
layers and is thus usually implemented in software. However,
software-related runtimes reduce the synchronization accuracy
and are further influenced by the cryptographic protection of
time messages using the Network Time Security protocol (NTS).
This paper examines these runtimes and shows the effects on
popular NTP implementations. After separating these latencies
into their components, we present different approaches for
compensation by modifying the NTP timestamps. For non-
correctable latencies, this paper provides mitigation strategies
to improve the synchronicity.

Keywords—NTP, NTS, time synchronization, security,
analysis, latencies, runtimes, compensation, correction

I. INTRODUCTION
Today, the number of computers and machines interacting

with each other is ever increasing. The interconnection of
devices enables complex processes and working operations.
This usually requires time synchronicity between them, for
which reason time protocols are often employed. A well-
known representative is the Network Time Protocol (NTP)
[1] that synchronizes computer systems with a time
server via packet-based networks. In conjunction with the
Network Time Security protocol (NTS) [2], which is soon to
be published as an RFC standard, NTP messages can
additionally be protected against packet manipulation. The
synchronization of a computer with a time server accessible
via the Internet typically provides accuracies in the single-
digit millisecond range. If the time server is located in the
local network, accuracies in the lower microsecond range are
also possible, depending on the topology and the network
load. Even higher accuracies achieves the Precision Time
Protocol (PTP) [3], which provides a synchronicity in
the nanosecond range. However, this requires special
hardware support and a much higher setup effort. Therefore,
in the local network the choice of the time protocol
depends on the achievable accuracy as well as on the specific
accuracy requirements.

Nevertheless, the synchronization of the clock is affected
by errors and subject to both deterministic and stochastic error
sources. In particular, runtime fluctuations of NTP messages
transmitted over the Internet lead to a reduction in
synchronization accuracy. In the local network these are
significantly lower, so that errors due to software-related
delays dominate and can lead to a systematic time offset.
Especially the cryptographic protection of the NTP packets
has a negative effect on the accuracy, because the integrity
protection of a message can only take place after time
information has been written into the NTP packet.

This paper examines the software-based latency and
describes the composition of the individual parts. In the course
of the paper, Chapter II first gives an overview of NTP and
NTS, which serve as a basis for the analysis here. Chapter III
then addresses the reasons for the asymmetric runtimes
and focuses on the software-based share. The latencies
occurring here are then separated and described as error terms
for the time offset calculation in NTP. Furthermore,
this section discusses general possibilities for the
modification of NTP timestamps and presents solution
approaches with the respective advantages and disadvantages.
Afterwards we depict various measurements in Chapter IV.
These demonstrate the achievable synchronicity of
uncorrected NTP implementations and the magnitude of the
software latencies. In comparison, measurements with the
suggested correction approaches under different hardware
conditions follow. Chapter V considers non-correctable
software runtimes that influence the synchronicity and
provides countermeasures for mitigation. Chapter VI
illustrates the magnitude and consequences of software
latencies and finally discusses the effectiveness of the
correction mechanisms.

II. PRELIMINARIES
This chapter briefly describes the functionality and

properties of the Network Time Protocol and the securing of
the time information by using NTS.

A. Network Time Protocol (NTP)
When synchronizing the time of computer systems,

packet-based time distribution protocols are typically used.
One of the oldest and widely used mechanism for that is the
Network Time Protocol, which was originally developed by
D. L. Mills in 1985 [4]. In 2010, the Internet Engineering
Taskforce (IETF) standardized the revised version 4 (NTPv4)
as RFC 5905 [1], which is currently the latest version.

NTP uses the connectionless transport protocol UDP
to transmit time messages on port 123. It supports both one-
way time synchronization (broadcast) as well as two-way
time synchronization (unicast) and is therefore very flexible.
The established communication architecture bases on a
hierarchical approach, whereby the individual levels are
known as strata. The highest level, stratum 0, represents the
time source and is typically an atomic clock or a suitable
Global Navigation Satellite System (GNSS) receiver. Time
servers on stratum 1 distribute that time to the next lower
stratum 2, on which clients and also further time servers may
be located. With increasing stratum number, the achievable
synchronization accuracy of a client in relation to the time
source on stratum 0 decreases. For unicast communication, the
calculation of the time difference between client and server

bases upon four timestamps. The client sends a request to the
server at time T1, which is received there at time T2. After
processing of the message, the server sends back the modified
packet as a response at time T3 that the client receives at time
T4 (see Fig. 1). With these four timestamps, the client can
now calculate the Round-Trip-Time (RTT) δ (1) of the packet,
as well as the time offset θ (2) to the server and thus adjust
the local clock.

 δ = (T4 – T1) – (T3 – T2) (1)

 θ = ((T2 – T1) + (T3 – T4)) / 2 (2)

The increasing demand for security in the recent years also
comprises time information, for which reason NTP already
provides two protection mechanisms. However, both of them
are barely applied. The pre-shared key scheme in [1] uses
symmetric encryption and is still secure. Since the keys
between client and server must be manually configured
upfront, this approach scales poorly. The following Autokey
procedure [5] was intended to remedy this situation. It scaled
significantly better, but a security analysis in 2012 [6]
revealed serious design flaws. For this reason, most NTP
communication is still insecure and vulnerable, today.

B. Network Time Security (NTS)
The malfunctioning of existing security measures for NTP

led to the development of the Network Time Security protocol
[2], which is about to be finalized as an RFC standard. NTS is
a security extension for time protocols with a current focus on
NTP. Among other features it provides authenticity, message
integrity, unlinkability and key freshness. The communication
structure decomposes into two main phases (see Fig. 2), which
are implemented by different sub-protocols.

 The first phase is for negotiating security parameters
and the exchange of key material. The employed NTS-
Key Establishment protocol (NTS-KE) [2] uses a TLSv1.3
connection [7] as a basis for the encrypted transmission of
these data. Certificates allow the client to verify the
authenticity of the server during the TLS handshake. After
successful negotiation, the client receives a set of cookies with
which the time server can later check the integrity of the NTP
requests. These cookies are also encrypted by the time server
and contain all the information that allow the server to work
stateless. Once the security parameters and key material have
been exchanged, the client and server properly close the TLS
channel and thus complete the first phase. During the second
phase the NTP protocol is now used, which remains
unchanged in terms of communication. The client first
generates an NTP request packet, adds a cookie and secures
the whole message with NTS. The NTS data are embedded in
NTP extension fields, so no adaptation of the NTP protocol is
necessary. After receiving the NTS-secured NTP request, the
server decrypts the parameters contained in the cookie and
then checks the packet for manipulation. If the message is
intact, the server generates a response packet, adds a fresh
cookie and secures it in the same way. After receiving the
response, the client also checks the message, then saves the

new cookie for future messages and uses the time information
to synchronize the clock. If there are no more cookies left, e.g.
due to connection errors, the first phase is repeated.

III. ASYMMETRIES IN NTP COMMUNICATION
This section discusses the causes of asymmetric runtimes

in NTP and the effects on the synchronization process. The
focus lies on the software-based delays which, after further
decomposition, are included as error terms in the time offset
calculation. On this basis, approaches for correction follow.

A. Assumptions and Reality
The Network Time Protocol contains various mechanisms

such as selection, cluster and combine algorithms to achieve
the best possible synchronicity. These algorithms allow NTP
to select the best source from a bundle of several time
references as well as the detection and exclusion of sources
with large deviations, also known as falsetickers. In addition,
it increases redundancy, because if a time source is lost, the
next best one is selected. The NTP packets of a chosen NTP
time server are subsequently processed by a clock filter
algorithm. This algorithm uses a sliding window of eight
packets and selects the NTP message with the lowest expected
error for time synchronization. These are typically packets that
have the smallest delay δ (1) and are therefore most suitable
for synchronizing the local clock. Using the four timestamps
of a message, NTP can now determine the time difference θ
between client and server (2). The subsequent synchronization
process is done in conjunction with the Clock Discipline
algorithm to control the speed of the clock and thus avoid
leaps by hard setting the time. That algorithm uses a software
implemented phase locked loop (PLL) or a frequency locked
loop (FLL) to correct phase and frequency of the local clock
(typically a crystal oscillator). This minimizes time and
frequency errors and stabilizes the local clock, which has to
be continuously adjusted due to environmental influences
(e.g. temperature changes). If errors due to network
fluctuations dominate in NTP communication, the PLL is a
suitable solution to stabilize the clock. In contrast, the FLL
delivers better results with a dominant oscillator wander [8].

In order to achieve high synchronization accuracy, NTP
assumes symmetrical packet runtimes. Accordingly, the
transmission times of request and response packets must be
identical between client and server. Furthermore, this also
means that ideal timestamps in the NTP packet must be
assumed (see Fig. 3), which have to be recorded when sending
or receiving the first bit of a message. PTP defines the
message timestamp point specifically as the beginning of the
first symbol after the Start of Frame delimiter of an Ethernet
frame. In contrast, this is not specified concretely in NTP.

Fig. 1. Capturing of the four timestamps in NTP

Fig. 2. Phases in NTS secured NTP communication

Fig. 3. Assumption of ideal timestamps in NTP

The Network Time Protocol is subject to various
influences in a real environment, which lead to asymmetrical
runtimes in the RTT (see Fig. 4) and therefore to errors in the
time synchronization. These can be separated into three
groups: hardware errors εHw, network errors εNet and software-
based errors εSw (3).

 θ = θTrue + εHw + εNet + εSw (3)

 εNet = (tRes – tReq) / 2 (4)

 εSw = (tSw-Server – tSw-Client) / 2 (5)

The hardware error εHw is simplified and consists of a
stochastic error term and the clock drift. Stochastic errors are
random faults that are caused by natural processes in the
hardware and appear as noise. A direct correction is not
possible, but fortunately the effects on the synchronicity are
rather small. The drift on the other hand describes the
continuous deviation of the local clock from an ideal time
source. This is primarily dependent on the oscillator built into
the hardware. The amount of the error and the stability of the
clock is particularly linked to the accuracy class (e.g. TCXO
or OCXO), to error tolerances in manufacturing and to aging.
Furthermore, this error varies continuously depending on the
surrounding temperature. The effect on the offset calculation
is negligible, since the time drift here only affects the short
time span T4 - T1. Moreover, NTP continuously compensates
this error with the help of PLL and FLL and adjusts the speed
of the local clock of the client to its time server.

As for the second group of errors, the network error εNet
dominates in most cases, where the NTP client synchronizes
with a time server via the Internet. This is caused by runtime
differences between request and response packet, which
typically results in synchronization accuracies in the lower
1- to 2-digit millisecond range. Such asymmetric packet
runtimes are caused, among other things, by network load and
the forwarding of messages over different paths. Congestion
control and other mechanisms in switches and routers (e.g.
store-and-forward or queuing) additionally increase the
runtime differences in the RTT. Since NTP client and time
server have separate clocks, which differ from each other, it is
not possible for the client to detect such asymmetries. This
consequently leads to an error in the time offset calculation.
Subsequently, the resulting time offset error corresponds to
half of the runtime difference between request and response
packet (4). However, if the time server is located in the local
network, the RTT is subordinate and the runtime differences
are significantly reduced. In this case synchronization
accuracies in the microsecond range are possible, which can
be interesting in local networks.

Talking about the last group of sync errors εSw, the
differences in runtime do not only occur in the network, but
begin with the capturing and writing of the timestamps. The
NTP protocol is normally programmed in software and
usually runs on a non-real-time operating system. Delays that
occur here form a software error (see Fig. 5), which is included
in the offset calculation in the same way as the network error

(5). This is caused by reading the time at software level that
serve as transmit or receive timestamps. The time between the
recording of the transmit timestamp and the actual start of the
data transmission on the network depends on many factors.
These comprise the type and configuration of the operating
system, the performance of the hardware, the quality of the
NTP implementation and the quality of the timestamps itself.
Though the software-based latencies on a given system remain
approximately constant, but can differ between client and
server, this also leads to an asymmetry of the runtimes.
However, these do not simply result in stronger fluctuations
in synchronization, as is normally the case with network
errors, but rather lead to a systematic deviation. This effect is
further amplified by the cryptographic protection of the NTP
packets by NTS, since the time-consuming integrity
protection can only take place after the timestamping of the
packets. When using NTS-secured NTP in the local network,
the software error εSw therefore dominates, as will be shown
by the measurements in chapter III.D.2.

B. Analysis of Software-Based Latencies
In this section we take a closer look at the software

runtimes and separate them into logical parts. Here we assume
an NTS-secured NTP connection between client and server.

1) Types of Timestamps: The point in time when the
timestamps are taken is decisive for the magnitude of the
software latency. In Linux environments, a distinction is made
between hardware, kernel space and user space for the send
and receive timestamps (see Fig. 6). The hardware timestamps
THw are captured either on layer 1 (PHY) or layer 2 (MAC) of
the OSI model. These offer the highest quality, as they do not
contain any distortions due to software delays and thus
represent almost ideal timestamps. However, this type of
timestamping must be supported by the network interface
being used. Most computer systems do not offer such support,
which is why this type of timestamping is rarely employed
in NTP. In such cases, kernel space timestamps TSo are
used, which the operating system generates at the driver level
and are also known as (software-) socket timestamps.
Unfortunately, these are affected by runtimes of the
underlying network layer and distorted with delays of the
operating system. Typically, NTP implementations use this
type of timestamping when receiving NTP response
messages, because it provides the best accuracy on a software-
level. A direct use of the kernel space timestamp as a transmit
timestamp is not possible in NTP, because it can only be read
after sending the messages. For this reason, user space
timestamps TUsr are used, which unfortunately provide the
least accuracy in the context of time synchronization. This
type of software timestamps is taken directly in the NTP
implementation and is therefore subject to many effects and
delays of the operating system. Compared to ideal transmit
timestamps, user space timestamps additionally contain the
runtimes of the hardware, the network layers (OSI level 1-4),
the NTP implementation as well as the NTS processing times.

Fig. 4. Different runtimes of NTP messages lead to an asymmetry

Fig. 5. Asymmetric runtimes within the devices due to the software

2) NTP Latencies: The software latency begins with the
readout of the clock, which serves as the transmit timestamp
T1-Usr for the client side and T3-Usr for the server side. To
perform this, the NTP implementation calls a system
Application Programming Interface (API) function (e.g.
clock_gettime) that already causes initial delays due to
runtimes of the operation system. The returned time is then
converted to the NTP timestamp format and written to the
packet. The runtimes up to this point are depicted in Fig. 6 as
tNTP-A. If this message is to be secured, NTP executes the NTS
protocol at this point, which will be discussed in the next
section. Afterwards, the finalization of the NTP message now
follows, where the embedding of the NTS checksum or the
padding of the NTP packet takes place. The durations for these
actions form the term tNTP-B. Finally, the magnitude of these
NTP latencies depends mainly on the implementation quality,
possible additional mechanisms (e.g. logging features) as well
as on the performance of the hardware. Since the procedure
for the construction of NTP packets usually does not change,
an almost constant delay can be assumed.

3) NTS Latencies: Further delays are caused by the
Network Time Security protocol due to the cryptographic
protection of the NTP packet (tNTS). In addition to general
delays inducted by the individual implementation of the NTS
protocol, the duration of the security process depends on four
substantial factors.

The first factor is the amount of data to be secured. Besides
the header, each protected NTP packet contains additional
NTS contents, which NTP embeds in the form of extension
fields. With a stable connection between client and server, an
NTP message contains exactly one NTS cookie. In case
messages are lost, the client requests up to eight cookies from
its server that can be transported in a single NTP message.
Moreover, the size of the cookies depends on the structure
of the information they contain and the cryptographic
algorithm used. The amount of data to be secured by NTS
is therefore in a discrete range of 188 to 1428 octets (NTP
header + extension fields).

The second factor is the Authenticated-Encryption-
with-Associated-Data-Algorithm (AEAD) used to protect
the packets. According to the specification, NTS supports at
least the AES-based AEAD_AES_SIV_CMAC_256 (AEAD-
256) algorithm [9]. In addition to the 256-bit variant, the
bit lengths 384 and 512 are usually also available in
NTS implementations. Although a higher bit length increases
security, it also requires more time to secure the data.
Beyond this, the choice of crypto-library (e.g. OpenSSL)
influences the resulting runtimes too.

The third factor refers to an essential property of the
AEAD algorithms. In addition to providing integrity
protection, these allow the optional encryption of data. While
the client only generates the integrity checksum of the NTP
request packet, the server additionally utilizes the encryption
mechanism to transmit new cookies read-protected to the
requesting client. However, the encryption needs more time,
so that the processing of the same amount of data takes longer
compared to the generation of a pure integrity protection.
Even with equivalent hardware performance between client
and server and identical size of the NTP request and response
packets, this already leads to asymmetric runtimes.

The last factor is the performance of the hardware, which
has a great impact on the duration of the NTS securing
process. Embedded computer systems are mostly designed for
low-power applications and often use less powerful
processors. In contrast, desktop PCs or server systems are in
the high-performance segment and mostly provide both a
faster CPU and AES hardware acceleration for cryptographic
operations. A difference in performance between client
and server thus may increase the asymmetry in the RTT
and may have a massive influence on the achievable
synchronization accuracy.

4) Network Driver Latencies: Additional delays occur
when sending (tTX) and receiving (tRX) NTP messages, which
correspond to the time span between kernel space TSo and
hardware timestamp THw. The magnitude of these latencies is
also highly dependent on the device driver. Here, the driver
captures the transmission timestamps T1-So and T3-So in the
kernel space immediately before the data is transferred to
the hardware. At this point, the NTP packet is already
equipped with the UDP and IP header. On the other side, the
driver also takes the receive timestamps T2-So and T4-So after
the registration of incoming data, which the hardware
usually announces to the operating system via an interrupt
request (IRQ).

C. Error Characterization in the Time Offset Calculation
Having determined the different pieces of the software

runtimes, we now can extend the time offset calculation from
(2). As we said in the beginning of III.B we can omit εHw and
concentrate on the communication in the local network
disregarding εNet. So (3) simplifies to (6) containing only the
software error εSw.

 θ = θTrue + εSw (6)

We first separate the software error εSw from the time
offset calculation, since NTP is unable to detect asymmetric
runtimes and thus assumes ideal timestamps. The timestamps

Fig. 6. Detailed composition of the software runtimes

of the NTP messages T1, T2, T3 and T4 must therefore be
extended by the software runtimes ∆T1, ∆T2, ∆T3 and ∆T4 to
represent the actual transmit and receive timestamps TTrue.
According to Fig. 6, the software delays must be subtracted
from the transmit timestamps and added to the receive ones:

 T1 = T1-True – ∆T1 (7)

 T2 = T2-True + ∆T2 (8)

 T3 = T3-True – ∆T3 (9)

 T4 = T4-True + ∆T4 (10)

By using (7) to (10) in the time offset calculation (2) and
separating the timestamps from the latencies, the terms known
from (6) are obtained (11):

 (11)

Next we consider εSw, which can be further divided into
correctable and non-correctable error terms (12):

 εSw = εPacket + εSocket (12)

The correctable error term εPacket covers the error
introduced by the time spans at client and server between user
space timestamp TUsr and socket timestamp TSo, which are
measurable by NTP. It contains all NTP and NTS latencies
that occur after timestamping to secure and finalize the NTP
packet and results in the respective total runtime tPacket (13):

 tPacket = tNTP-A + tNTS + tNTP-B (13)

The non-correctable error term εSocket comprises the error
introduced by the time spans at client and server between
socket timestamp TSo and hardware timestamp THw and
contains the latencies of the lower network layers. This
primarily covers the delays caused by the network driver and
the operating system when sending (tTX) or receiving (tRX) NTP
packets. The missing correction possibility is due to the fact
that most systems have no support of hardware timestamping
and therefore the magnitude of the error term is unknown.
Of course, if hardware timestamping is available, this value
can be corrected.

In the following step, we now replace the generic software
delays ∆T1, ∆T2, ∆T3 and ∆T4 with the specific runtime
components. According to Fig. 6, the transmission delays ∆T1
and ∆T3 comprise the terms tPacket and tTX, while the reception
delays ∆T2 and ∆T4 only consist of tRX. The indices '-C' and
'-S' represent the client and server side respectively:

 ∆T1 = tPacket-C + tTX-C (14)

 ∆T2 = tRX-S (15)

 ∆T3 = tPacket-S + tTX-S (16)

 ∆T4 = tRX-C (17)

After using (14) to (17) in (11) and sorting the terms, the
software error εSw in (12) expands as follows (18):

 (18)

Now we have completely determined the error terms so
that the time offset calculation can be described like this (19):

 θ = θTrue + εPacket + εSocket (19)

The true offset θTrue is only achievable if the error terms
cancel each other out or are reduced to zero. This is possible
with the term εPacket, as it is measurable and can be
compensated by the usage of a suitable correction method.
Since εSocket is not determinable in most cases, the hardware
and software conditions of client and server must be identical
in order to eliminate this error. With identical hardware, the
socket runtimes cancel each other out, so that only low jitter
is to be expected. In conjunction with the εPacket correction an
almost flawless offset should be achievable. However, if the
hardware and software of the client and server differ, then
εSocket will dominate the error.

D. Suggestions for Correction
In this section we describe different approaches to

compensate the error term εPacket defined in III.C. In order to
do this, we start with the general possibilities the client and the
server have. Subsequently, concrete solutions will follow,
whose advantages and disadvantages will be compared.

1) General approaches for client and server: The
correction of the time offset calculation can be handled in NTP
by the direct modification of the NTP message timestamps.
Under the assumption that hardware timestamps are not
available, the correction is limited to the runtime tPacket (13),
which only occurs in the transmission paths on client and
server side. Consequently, the NTP timestamps T1 and T3 must
be corrected by the respective runtime tPacket to achieve the
accuracy of T1-So and T3-So (see Fig. 6).

The transmission latencies of the client can be corrected
by three methods. In the first one, the client measures the time
span T1-So - T1-Usr, which equals the runtime tPacket-C. T1-Usr is the
NTP message timestamp T1, while T1-So can be queried by the
operating system after the packet has been sent. The client
stores this duration and can correct the packet after receiving
the response by adding tPacket-C to T1 (20):

 T1-Corrected = T1 + tPacket-C (20)

The second method is similar to the first one, except that
the message timestamp T2 is adjusted instead of T1. In order to
calculate the same time offset, only tPacket-C has to be subtracted
from T2, while T1 remains unchanged. This can be useful if
NTS should correct the message timestamps instead of NTP.
Since NTP implementations can apply the Data Minimization
[10], the T1 timestamp in the NTP packet could contain
random data so that only NTP knows the transmit timestamp
T1. Therefore, the T2 correction is the only possibility here.
The third and recommended method is the direct use
of T1-So, which is taken instead of T1 (= T1-Usr) after receiving
the NTP response.

On the server side, corrections are more difficult to
implement. The transmit timestamp T3-So of the NTP response
is of course only available after sending and can therefore not
be written into the NTP packet beforehand. The latency tPacket-S
caused by NTP and NTS is also only known after the securing
process. The message timestamp T3 can therefore not be
corrected by the measured runtimes, otherwise the integrity
protection would be lost. The following sections describe in
detail how the server can proceed.

2) Direct Timestamp Correction on Server Side: With this
method, the client and server modify their respective
timestamps independently of each other. The NTP server tries
to achieve the best possible compensation by correcting the
message timestamp T3 for server side latencies (tPacket-S). Since
this can only be done before the message securing by NTS,
the value must be estimated. However, a simple average over
the processing time of NTP packets is not sufficient, since the
message sizes and the AEAD algorithms used can vary for
each NTP packet. Additionally, outliers affect the average
value, too. Because the server can operate with a large number
of clients, load differences can also lead to different latencies
and thus additionally distort a simple average value.

A better alternative is the use of a look-up table, in which
the averaged latencies for different configurations are stored
(see Table I). A simple table can thus be created on the basis
of the specific packet size and the AEAD algorithm used.
In NTS, secured NTP messages typically have up to eight
packet sizes, depending on the number of cookies they
contain. If we use the three possible bit lengths of the AEAD
algorithm defined in NTS, the table thus contains 24 cells for
secured messages and one additional cell for unsecured NTP
messages. The size of this table can be extended to cover
additional cases. Several tables can also be deployed
depending on other factors (e.g. system load or temperature).
The value of each cell is calculated by a moving median that
fits the corresponding configuration (packet size and AEAD
algorithm). Furthermore, the window size should depend on a
defined time interval, since the number of NTP requests per
second can strongly vary. The window size should be
sufficiently small to be able to react quickly to runtime
changes and also large enough to be robust against individual
outliers. To minimize excessive loads, servers with a large
number of clients should limit table updates. For this reason,
the respective cells should not be updated more frequently
than e.g. 10 times per second (depending on table size and the
specific application). Servers should also save these tables
periodically in order to reuse these values when the NTP
service is restarted. If the values are not available, the latency
of generated dummy packets might be measured at the
program start-up to obtain initial values.

With this correction method, the server remains stateless
and is able to apply correction values for different NTP
packets while keeping the memory usage low. These packets
are not changed in size and thus do not constitute an attack
potential for a possible amplification Denial of Service (DoS).
However, the disadvantage is that the client is not informed of
a possible T3 modification. If the client does not perform a T1
correction, the asymmetries can even increase, because tPacket-S
equals zero and εPacket becomes larger (see (18)). Moreover,
even if a client is aware of these corrections, it cannot reverse
them if it is unable to correct its T1 due to local limitations.

A possible remedy is to transmit a correction information
flag. With NTS-secured NTP, client and server can negotiate
the activation of the T3 correction during the NTS-KE phase.
This information can then be encoded in the cookies so that
the server can decide individually for each client on the use of
the correction values. Alternatively, the server can at least
publish whether it corrects or not.

3) Sending a Correction Value via EF: A modified variant
is the use of NTP extension fields. The process is mostly
identical to the direct adaptation from III.D.2. However, the
server does not change the timestamp T3 directly, but transmits
this correction value to the client via an additional NTP
extension field. In order for this value to be protected,
the extension field must be embedded in NTP before NTS
performs its integrity protection. The advantage of this method
is that the timestamp correction can be applied by the client. It
can decide for itself whether a correction should be applied or
not. A negotiation between client and server is therefore not
necessary. However, a disadvantage is the slightly higher NTP
packet size of about 20 octets for the additional data. To
prevent amplification DoS attacks, the client must also send
such an extension field with empty content to the server so that
the request and response packets have the same size. If such
an extension field is not contained in the request, the server
can assume that the client does not need correction data and
does not insert any correction data in the response message.

4) Follow-up / Interleaved Model: A complete correction
on the server side is only possible if it communicates the actual
software latency tPacket-S or the transmission timestamp T3-So to
the client. However, this is only feasible if the designed NTP
communication structure is slightly modified. The first
possibility for this would be the establishment of a follow-up
message, which is sent immediately after an outgoing NTP
packet. NTS-secured NTP messages lead to further changes to
avoid the need to apply integrity protection to both messages
(NTP and follow-up). A possible solution for this is the
unsecured transmission of the NTP response from the server
to the client, which contains the distorted T3 by the tPacket-S
runtimes. The subsequent follow-up message contains a copy
of the previously sent NTP packet and its socket timestamp
T3-So. In addition, the follow-up message must be secured with
NTS to prevent packet manipulation. Upon receipt of both
messages, the client can check the follow-up message for
integrity and then compare the contents of the NTP packets. If
they match, the NTP packet and the separately transmitted
T3-So timestamp can be used for the time offset calculation
instead of T3. If one of the messages is missing or the contents
do not match, the client discards these packets. With this
method, vulnerability through amplification attacks must also
be taken into account. To counteract this, the request packets
of the client must be enlarged accordingly. This again results
in the fact that clients may request fewer cookies in case of
message loss, in order not to exceed the maximum
transmission unit (MTU) size of the network.

Another approach similar to the follow-up principle is the
interleaved mode. This was originally defined in RFC 5905
[1] as symmetric mode to keep servers on the same stratum
synchronous. An IETF draft document [11] also proposes this
principle for the NTP unicast mode in order to transmit the
T3-So timestamp. With this approach, some timestamp fields in
NTP are handled differently. However, compatibility with
NTP clients and servers without interleaved mode is
maintained. An NTP client in interleaved mode additionally
transfers the faulty T3 timestamp from a previous response
packet in the request message. Using this T3 timestamp in
combination with the IP address of the client, the server can
retrieve the stored T3-So timestamp from the previous message
and also embed it in the NTP packet. The NTP response
packet therefore contains the distorted T3 timestamp of the
current message and the T3-So of the previous packet. This
procedure does not require follow-up messages or extension

TABLE I. EXAMPLE OF A LOOK-UP TABLE

Packet Size AEAD-256 AEAD-384 AEAD-512
188 octets 20.4 µs 22.5 µs …
292 octets 24.1 µs 27.3 µs …

… … … …

fields and is also compatible with NTS. However, the server
must be stateful for this to work. With a large number of
clients, this could place an additional load on the server as the
memory requirement increases. Depending on the request
interval, the clock drift may also have to be taken into account.

IV. MEASUREMENTS
In this section, the presented correction mechanisms are

now applied to measure their effects on the synchronization
accuracy. For this purpose, uncompensated NTP devices were
first used as a reference in a measurement setup and then
extended by the correction mechanisms.

A. Uncorrected NTS-secured NTP Synchronization
This first part of the measurements without any timestamp

correction examines the synchronicity of NTS-secured NTP
communications in an ideal network. We measured the NTS
runtimes tNTS, the software latencies tPacket as well as the
systematic time offset between client and server.

1) Securing Duration of the AEAD Algorithms: The NTS
latencies tNTS consist almost completely of the runtimes that
arise during the cryptographic protection of an NTP packet.
Therefore, the first series of measurements focused on the
AEAD processing times including the necessary allocation
and freeing of memory. For this purpose, each NTP
message was equipped with one to a maximum of eight
cookies and then processed with the respective AEAD
algorithm. The number of cookies is defined by the client with
its requests. Since the cookie size and the associated NTP
message size depend on the applied AEAD algorithm, there
are typically 24 possible packet sizes as described in III.D.2.
The measurements with a free AEAD library [12] based on
OpenSSL 1.1.1b [13] were run on several Linux machines.
The hardware platforms varied from a weak Raspberry Pi 1 to
a powerful desktop PC. As typical for NTS, the request
packets only provided integrity protection, while the response
NTP packets also contained encrypted message parts.

Table II shows examples of the duration of the securing
process of the NTP packets both at the client and at the server.
The configurations are based on the standard case where the
AEAD-256 algorithm is used and NTP packets contain one
cookie. The amount of data to be secured thus amounts to 188
octets (NTP headers + NTS content). Due to the additional
encryption, the duration of the process on the server side
increases by about 15% in comparison to the client. The
performance of the hardware has a strong influence here, as
Table III illustrates. It shows the minimum and maximum
values on different devices for the typical bit lengths of the
AEAD algorithm supported in NTS. Minimum values refer to
the client side, in which 188 octets are to be secured and
correspond to NTP messages with a single cookie. Maximum
values, on the other hand, are on the server side and contain a
data set of 1428 octets that corresponds to eight cookies. The
duration of the NTS protection is proportional to the amount
of data and the AEAD algorithm used, as shown in the

measurement series on the Meinberg microSyncRX in Fig. 7.
However, the durations for a fixed AEAD algorithm and a
fixed number of cookies are almost constant for a given
computer system.

2) Correctable Software-based Latencies: The measuring
of the software latency tPacket is simple and starts with the
acquisition of the transmit timestamp in the NTP
implementation. On the client side, this corresponds to the
timestamp T1-Usr, which NTP queries via an API function in
the user space and then writes into the NTP request message.
The actual transmission process of the message defines the
end of the measurement. Since hardware timestamps are not
available in most cases, socket timestamps are usually used.
Chapter V describes the consequences of this action in more
details. The resulting software latency is now the difference
between the TX socket timestamp T1-So and T1-Usr.

Fig. 8 shows the results of an NTP server on a Raspberry
Pi 3B. This server communicates with several clients and thus
allows the observation of latency under different load
conditions. For the measurement, the NTP clients and the time
server were using an NTS-capable NTP implementation of the
Ostfalia University (NTP-O). All clients communicated NTS-
secured with the AEAD-256 algorithm and exactly one cookie
per NTP message. The request frequency of the clients was set
to 8 seconds. The results show an average software latency of
97 µs on the server when communicating with a single client.
Each point represents the measured latency of an NTP
response message. Due to background processes of the
operating system, the measured values fluctuate by about 9 µs.
If the server is loaded with several clients, the software latency
decreases and settles down to 62 µs for 20 or more clients. In
Fig. 8 this effect is visible after 3000s, where the number of
clients was increased to 100 and later reset to 1. The results in
a histogram (see Fig. 9) show a significantly lower dispersion
when the server is loaded with 100 clients. However, this

TABLE III. DURATION OF THE SECURING PROCESS (MIN/MAX VALUES)

 AEAD-256
(µs)

AEAD-384
(µs)

AEAD-512
(µs)

Raspberry Pi 1 87 / 224 95 / 294 101 / 360
Raspberry Pi 3B 20 / 64 22 / 86 25 / 111
Meinberg microSyncRX 27 / 82 29 / 112 33 / 149
Desktop PC w/o AES-NI 1.8 / 8.3 2.2 / 11.7 2.6 / 16.0
Desktop PC w/ AES-NI 1.0 / 1.8 1.1 / 2.2 1.1 / 2.8

Fig. 8. Software latency tPacket on a Raspberry Pi 3 server at low and high

workload

Fig. 7. Securing time of NTP packets (tNTS) based on the number of cookies

included and the AEAD bit length.

TABLE II. TYPICAL DURATION OF THE SECURING PROCESS USING NTS

 Client
(µs)

Server
(µs)

Raspberry Pi 1 87 101
Raspberry Pi 3B 20 24
Meinberg microSyncRX 27 31
Desktop PC (i7-6700) w/o AES-NI 1.8 2.4
Desktop PC (i7-6700) w/ AES-NI 1.0 1.1

behavior only occurred with Raspberry Pis during the
measurements. The reason for this is an increased process
priority. Further measurements on other hardware platforms
resulted in mean latencies of 170µs on a Meinberg
microSyncRX and 53µs on a desktop PC (i7-6700).

3) Systematic Time Offset: The influence of the complete
software latencies including tTX/tRX on synchronization
accuracy has been measured for the most popular NTP
implementations. These include NTPd, NTPsec, Chrony and
NTP-O, most of them with NTS support. During the
measurement series, all implementations were tested against
each other, both unsecured and NTS secured (if possible).
Furthermore, all tests were performed on different hardware
platforms and varied among each other. Like the measurement
of the software latencies, Raspberry Pi 3B devices, desktop
PCs (i7-6700) and Meinberg microSyncRX devices were used.
Furthermore, the devices were connected directly via Ethernet
during the measurements to ensure ideal network conditions.
The measurement of the actual time offset between client and
server can no longer be reliably determined by a pure software
solution. For this reason, a hardware-controlled measuring
system was applied, which enabled the simultaneous time
measurement of the connected devices and limited the
measurement error. This made it possible to determine
the actual time deviation between the devices, with an
uncertainty of 1µs.

The evaluation of the measurement data revealed
systematic deviations in all NTP implementations, which
amounted to up to 85 µs depending on the constellation.
Especially the communication of different NTP services, the
use of NTS-secured NTP or large differences in hardware
performance between client and server had a negative effect
on the synchronization accuracy. But even in configurations
with identical hardware and software, systematic deviations
of up to 50µs occurred. Fig. 10 shows an example of a
measurement recording taken by a client that synchronized
itself NTS-secured with a time server. Both client and server
used an adapted NTP-O on Raspberry Pi devices and were
connected directly via Ethernet, like in the other tests. The
packet offset (grey line) in the diagram shows the time offset
θNTP of all received NTP messages calculated by the NTP.
After processing these data by the clock filter algorithm, the

NTP messages with the least error are used for time
synchronization (green line). Based on the calculated time
offset θNTP, NTP adjusts the local clock, whereby the course
slowly approaches zero. However, the actual time offset θTrue
(red line) measured by the hardware shows a systematic offset
of about 62 µs (= actual offset - filtered packet offset), which
NTP cannot detect due to asymmetric software runtimes. The
asymmetry in this measurement was caused by slightly higher
runtimes in the client implementation. The additional load of
the server with a total amount of 100 clients further decreases
the synchronization accuracy. Based on the measured values
on different hardware platforms and NTP implementations, it
can be confirmed that NTS-secured NTP synchronization has
barely any influence on synchronization accuracy when the
time server is reached via the Internet and therefore the
network influences dominate. However, in the local network
these software latencies have a significant influence.

B. Applying the Correction Mechanisms
In the following measurements, the correction methods

were applied to NTS-secured NTP connections. For this
purpose, NTP-O was extended by two correction methods.
The first one is the transmission of the correction value from
the server to the client (see III.D.3), the second one is the
interleaved mode (see III.D.4).

1) Identical Hardware on Client and Server: If both the
hardware and software conditions on the client and server
side are identical, then the full compensation of the software
latency is almost possible. In this case the error term εSocket
becomes zero (see III.C). The hardware setup used here
corresponds to the procedure from IV.A.3 and uses
Raspberry Pis 3B on both sides. While the NTS-secured time
synchronization without a compensation mechanism shows a
systematic time offset of 62µs (see Fig. 10), the usage of the
correction value approach reduces it to about 2µs (see Fig. 11).
The use of the interleaved approach achieves similarly low
values of 1µs. Both compensation methods also stabilized the
calculation of the time offset in NTP. An additional load on
the server side with a total number of 100 clients had no
impact on synchronicity despite fluctuating server latencies.

Fig. 9. Histogram of the software latency tPacket of the server (Raspberry

Pi 3B) at low and high workload

Fig. 10. Systematic time offset (θTrue - θNTP) of a synchronized NTS-secured

NTP-O client with changing server load.

Fig. 11. Systematic time offset of an NTS-secured NTP-O client with

changing server load and activated tPacket compensation (see III.D.3)

Fig. 12. Effects of hardware differences between client and server on

synchronicity with active compensation.

2) Different Hardware on Client and Server: If the
hardware platforms vary between client and server, the
compensation of the tPacket runtimes in most cases does not lead
to a significant reduction of the systematic time deviation and
may even increase it. Especially the performance differences
of the hardware have a significant influence on the amount of
the systematic deviation. Fig. 12 demonstrates the effect
where the Raspberry Pi server used in IV.B.1 was replaced by
a desktop PC. Despite εPacket compensation, the deviation for
both correction approaches is 61µs for NTS-secured
connections and 51µs for unsecured NTP connections.
Without a correction mechanism, these values are 19µs for
NTS-secured NTP and 41µs for unsecured NTP. The reason
for this are the software runtimes between socket timestamp
and hardware timestamp that now differ for client and server.
In this measurement, the compensation of εPacket led to an
increase in asymmetry, since the error terms described in
III.C, which have different signs here, do not cancel each
other out anymore (see (18)). The difference of 10µs
between unsecured and NTS-secured NTP with active
compensation is solely due to the different packet size of 140
octets. As a consequence of the larger messages, the runtimes
in tTX and tRX increase. In contrast, the variation of the
tPacket latencies have no longer a negative influence on
the synchronization accuracy.

V. MITIGATION OF SOCKET RUNTIMES
As could be shown, the latencies in the kernel and driver

functions have a significant effect on synchronicity and cannot
be easily corrected. The magnitude of these latencies varies
not only due to the hardware, but also due to the operating
system and the drivers installed on it. However, the handling
of the paths for TX and RX are different, which favors an
asymmetry in the runtimes. For the TX path, these runtimes
are usually shorter, since the transmission process is started by
calling the corresponding API function within NTP. This
means that the data is processed immediately in the individual
layers and then sent out to the network (see Fig. 13). The
transmit timestamp is recorded directly before the data is
written to the TX buffer. On the other hand, the RX path is
usually subject to higher runtimes due to the event that signals
the operating system about received data. This can be done
both traditionally via interrupt requests and via New API
(NAPI). With NAPI no interrupts are used, but the kernel
periodically checks for incoming packets (polling) without
being interrupted. While this eliminates the overhead of
interrupt processing and thus reduces CPU load, it also
increases the tRX latency. In this path, the RX socket
timestamping takes place during IRQ handling or after the
polling process via NAPI.

Fig. 14 shows the tTX and tRX latencies on the desktop PC
used in IV.B.1, which supports hardware timestamping and
thus allows the measurement of the delays between socket
timestamp TSo and hardware timestamp THw. With 45µs for tTX
and 237µs for tRX, the values here are significantly higher than
the delay times due to NTP and NTS (tPacket). Since these
amounts usually differ between client and server depending
on the hardware, this leads to the systematic time deviation
measured in IV.B.2.

On Linux there are several ways to affect the tTX/tRX
delays. The first option is the power management setting. The
CPU frequency scaling can be governed, among others, to run
the processor at its maximum frequency (performance), at its
minimum frequency (powersave) or to dynamically adjust its
frequency depending on the load (ondemand). For identical
operations (e.g. packet securing with NTS) this can lead to
small runtime fluctuations and also influence the socket
timestamps. To minimize the jitter, the CPU can be run in
performance mode. The second way is the activation of the
SO_BUSY_POLL (busy-poll) option in the socket settings. To
achieve a low latency this method significantly reduces the
polling interval for new data in the RX buffer. However, as
this process increases the load on the CPU, NTP clients should
define a timeout for this method. Since the NTP response
usually arrives at the client in less than 200ms after sending
the request, a suitable timeout can be specified to deactivate
the busy-poll option after the timeout has elapsed.

The measurements show that the busy-poll activation
greatly reduces the tRX latency and now achieves 25µs (see
Fig. 15). An additional activation of performance mode did
not result in further improvements and even increased the tRX
latency to 290µs when busy-poll was not activated. The tTX
latency remained constant at 45µs for all measurements and
configurations. With activated busy-poll and interleaved
compensation on client (Raspberry Pi) and server (desktop
PC), the systematic time offset decreased slightly. For
unprotected NTP it was now 43µs and 50µs for NTS-
protected NTP.

Further correction possibilities are hardly feasible and
require increased effort or additional hardware features. One
idea to mitigate the tTX latency, would be the use of a Network
Interface Card (NIC) with launch time support (e.g. Intel
i210). This allows the socket functions to explicitly define a
transmission time. However, the successful transmission at
the defined point in time highly depends on the network load.
Furthermore, the RX runtimes remain untouched, so that a

Fig. 13. Transmission (TX) and reception (RX) paths of the operating

system for network communication.

Fig. 15. Socket latencies (tTX, tRX) on a desktop PC with active busy-poll

Fig. 14. Socket latencies (tTX, tRX) on a desktop PC without optimizations

slight reduction in asymmetry is only possible if client
and server use this method. In order to neutralize the runtimes
tRX and tTX, hardware timestamps at both the client and
the server are therefore absolutely necessary. However, a
one-sided use of the hardware timestamps on the server
side leads to a greater asymmetry, especially with low-
performance clients, since the socket runtimes no longer
cancel each other out (see (18)).

VI. CONCLUSIONS
The result of the correction approaches presented here

illustrates that an improvement of the synchronicity between
client and server is quite possible. Under identical hardware
and software conditions, systematic deviations of up to 85µs
in local network context could be reduced to almost zero, more
or less independent of the compensation method used. The
introduced compensation method of direct timestamp
correction on the server side or the use of an NTP extension
field, both using values from a table of median values fitting
the message properties leaves the server stateless giving it a
vital advantage over the other approaches. The client easily
can compensate its share by saving the socket timestamp when
the packet is handed over to the driver buffer and using this
value as sending timestamp in its offset calculation.

However, the measurements also confirmed the statement
given in the analysis, that in the case of considerable
performance differences between client and server, the
directly non-measurable runtimes in the lower network layers
dominate in a local network. So, perfect synchronicity is only
achievable with hardware timestamps. Nevertheless, these
must be supported and used by client and server in order to
eliminate software latencies completely. Even in that case, one
of the compensation methods is necessary with NTS secured
NTP as the timestamps have to be packed into the NTP
message before any cryptographic operation takes place.

In any constellation with or without hardware
timestamping, any offset degradation caused by NTS securing
can easily be compensated, thus annihilating any arguments
against using NTS, today.

REFERENCES
[1] D. L. Mills, U. Delaware, J. Martin, J. Burbank and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms
Specification," RFC 5905, doi 10.17487/rfc5905, 2010.

[2] D. Franke, D. Sibold, K. Teichel, M. Dansarie and R. Sundblad,
"Network Time Security for the Network Time Protocol," Internet
Draft, draft-ietf-ntp-using-nts-for-ntp-28, March 2020.

[3] "IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems," IEEE Std 1588-2019
(Revision of IEEE Std 1588-2008), Nov 2019.

[4] D. L. Mills, "Network Time Protocol (NTP)," RFC 958, doi
10.17487/RFC0958, September 1985.

[5] D. L. Mills and B. Haberman, Ed., "Network Time Protocol Version 4:
Autokey Specification," RFC 5906, doi 10.17487/rfc5906, June 2010.

[6] S. Röttger, "Analysis of the NTP Autokey Procedures," Project Thesis,
Technische Universität Braunschweig, Institute of Theoretical
Computer Science, Braunschweig, 2012.

[7] E. Rescorla, "The Transport Layer Security (TLS) Protocol Version
1.3," RFC 8446, doi 10.17487/rfc8446, Aug. 2018.

[8] D. L. Mills, "Computer Network Time Synchronization - the Network
Time Protocol," CRC Press, Boca Raton, 2006.

[9] D. Harkins, "Synthetic Initialization Vector (SIV) Authenticated
Encryption Using the Advanced Encryption Standard (AES)," RFC
5297, doi 10.17487/rfc5297, 2008.

[10] D. F. Franke and A. Malhotra, "NTP Client Data Minimization,"
Internet Draft, draft-ietf-ntp-data-minimization-04, March 2019.

[11] M. Lichvar and A. Malhotra, "NTP Interleaved Modes," Internet Draft,
draft-ietf-ntp-interleaved-modes-03, Feb 2020.

[12] D. F. Franke, "libaes_siv," GitLab Repository, [Online] available:
https://github.com/dfoxfranke/libaes_siv, 2019.

[13] OpenSSL.org, "OpenSSL libraries v1.1.1b," [Online] available:
https://www.openssl.org/source/old/1.1.1/, 2019.

	Vorspann Latencies in NTS-secured NTP
	Analysis and Compensation of Latencies - v1.0 (IEEE Xplore-compatible, PID6461121)

