
embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

University of Applied Sciences
Braunschweig/Wolfenbüttel

Design and Implementation of a
FPGA-based Pipelined Microcontroller

Rainer Bermbach, Martin Kupfer

University of Applied Sciences Braunschweig/Wolfenbüttel
Salzdahlumer Str. 46-48, 38302 Wolfenbüttel, Germany

r.bermbach@fh-wolfenbuettel.de, martin_kupfer@web.de

Abstract
A multi-stage pipeline version of a PIC®-compatible microcontroller core has been developed
to study the actual problems in pipeline design, possible approaches and the concrete solu-
tions. This paper describes the design, the structure and the problems as well as solutions
and the achieved performance of the pipelined microcontroller. The target for the pipelined
core was a Xilinx Spartan-3 FPGA. For the PIC®-compatible pipelined controller a five stage
pipeline was chosen with the stages FETCH, DECODE, operand READ, EXECUTE and
WRITE back. So-called data hazards generate problems with the order of instruction execu-
tion. Data hazards are resolved by data forwarding or halting the pipeline until the memory
position is written. With the developed effective data hazard detection unit most of the time
data forwarding can be used thus eliminating nearly all cycle losses due to data hazards.
Jump and call instructions etc. interrupt the normal sequential program flow resulting in so-
called control hazards. Due to the efficient handling of the control hazard detection in the
developed controller unconditional jump, call and return instructions are carried out without
any cycle losses. The loss of cycles due to data and control hazards is reduced to a mini-
mum. In the current version the pipelined controller runs at 70 MHz with approximately 1 CPI
delivering a threefold performance increase over the conventional FPGA design and a factor
of 14 compared to standard products.

1 Introduction
In modern electronic designs discrete microcontrollers and other devices are often replaced
by cores and IPs integrated in FPGAs or gate arrays. These so-called System-on-Chip (SoC)
designs allow for flexible development and system implementation. A conventional PIC®-
compatible VHDL-based microcontroller core, some peripherals and a hardware based de-
bug unit with trace capability (VHDL PIC) had been developed in a feasibility study at the
University of Applied Sciences Braunschweig/Wolfenbüttel [2-7], which can be used for typi-
cal System-on-Chip designs. Running at 100 MHz in a Xilinx Spartan-3 FPGA (speed grade
4) the controller performs nominally 25 million assembler instructions per second. Practically,
20-23 assembler MIPS are reached in typical programs.

To further increase the performance of the controller the development of a multi-stage pipe-
line version of the VHDL PIC controller core was started. Besides rising processing speed
the goal was to study the actual problems in a pipeline design, possible approaches and the
concrete solutions, which can not be learned from text books [8] and papers, but only
through own experience. Small microcontrollers hardly ever use pipelining or only in a very
simple way, e.g. overlapping code fetch and execution as does the original PIC® from Micro-
chip [1]. Thus it was interesting what the cost would be in terms of gate count etc. of a real
pipelined architecture.

embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

This paper describes the design, the structure and the problems as well as solutions and the
achieved performance of the pipelined microcontroller. The target for the VHDL PIC in the
pipeline version is again a Spartan-3. The Block RAMs are used to implement program
memory, register file and stack. Basic design tasks were the implementation of pipeline reg-
isters between the different pipeline stages to pass on an instruction from one stage to the
following as well as mechanisms for halting the pipeline or flushing a single instruction out of
the pipeline. For the PIC®-compatible pipelined controller a five stage pipeline was chosen
with the stages FETCH, DECODE, operand READ, EXECUTE and WRITE back. Chapter 2
gives some basic information about pipelining in processor architectures whereas the follow-
ing chapter 3 describes the structure of the pipeline of the pipelined VHDL PIC.

Several difficulties arise from the use of pipelining in microcontroller architectures. So-called
data hazards generate problems with the order of instruction execution, for example when a
memory position needs to be read but a former instruction which is yet in the pipeline still
needs to write its result to the same memory position. Data hazards are resolved by data
forwarding or halting the pipeline until the memory position is written. Jump and call instruc-
tions etc. interrupt the normal sequential program flow resulting in so-called control hazards.
The pipeline has to be flushed and refilled with new instructions from the place where the
program continues. Typically, these control hazards have great impact on the performance of
a pipelined architecture. Chapter 4 depicts the possible hazards in general and the actual
problems occurring in the pipelined PIC architecture. Chapter 5 introduces into the solutions
to the hazard problem. In the following chapter 6 the overall structure and the components of
the realized pipeline are presented. Chapter 7 gives some results and performance figures of
the implemented controller before chapter 8 concludes this paper.

2 Pipeline Basics
Pipelining is a mechanism to accelerate instruction execution [8]. Normally, all instructions
are executed sequentially, running through the different units of a microcontroller: reading the
instruction code from program memory (F), decoding it (D), reading operands (R), executing
the instruction (E) and writing results to memory (W), see Fig. 1.

Figure 1: Sequential workflow of instruction steps in conventional architectures

Figure 2: Parallel instruction handling in pipelined architectures

Similar to an assembly line, a pipeline architecture executes multiple instructions in parallel in
the various units, so every stage handles another instruction every clock cycle (see Fig. 2).
An instruction travels through all units entering the following stage with the next edge of a
clock; thus, every clock cycle one instruction is finished. As one can see from the example,
the pipeline accelerates instruction processing by a factor of five, i.e. the number of stages.

embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

Unfortunately, there are limitations like hardware delays, dependencies between instructions
and non-sequential code which limit the practical number of stages in a pipeline. The de-
signer’s task is to manage these limitations and develop a pipeline length that fits best.

Some problems in pipelined program execution result in reduced processing speed to pre-
vent invalid results: Basic mechanisms for solving the problems are halting the pipeline until
the execution is valid or erasing invalidated instructions from the pipeline. The main task
when implementing a pipeline is to design special hardware for prevention of halting or even
worse flushing the pipeline. To pass on the instruction and the progress made in one stage to
the following stage a register has to be placed between these stages. Theses registers are
called pipeline registers and catch all necessary data and signals for the successive stages.

3 Principal structure of the Pipeline
Following information processing in the original PIC® architecture [1] the instruction execution
for the VHDL PIC is subdivided into five steps [9], so the final pipeline comprises five stages:

• Fetch: creates the program counter and fetches the instruction code from the pro-
gram memory.

• Decode: decodes the instruction code and sets signals for the following stages.
• Read: reads an operand from the respective memory position.
• Execute: executes the instruction.
• Write: writes the result of the instruction to the memory position if required.

Figure 3: Pipeline stages coupled by registers

As shown in Fig. 3 adjacent stages are connected through pipeline registers. These registers
store all information of an instruction at the (falling) edge of the clock to forward it to the fol-
lowing stage. They are named after the stages they couple, e.g. the F/D register connects
the Fetch and the Decode stage. Signals created in the stage are stored in the respective
register and signals from earlier stages are written to it to pass them on to their destination
stage. The pipeline registers own functions for resetting, stalling and flushing:

• Reset: In case of a reset of the pipeline, all stage registers are filled with values
as they would be created by a NOP (no operation).

• Stall: A stall indicates to all stages that a requested memory position is not
ready to be read. So the pipeline is halted until the detected problem is re-
solved.

• Flush: The flush signal indicates to a stage, that it handles an invalidated instruc-
tion which has to be deleted from the pipeline. To cancel that instruction
the involved registers are filled synchronously with the status of a NOP (no
operation).

4 Possible Hazards in the VHDL PIC Architecture
As mentioned above there are some problems that limit the performance of a pipeline de-
sign. These limitations are called hazards. So-called structural hazards are caused by non-
exclusive access to microcontroller resources like memories, registers or arithmetic units.
Normally, all registers are implemented with one single port for reading and writing, thus it is
impossible to perform a simultaneous read and write of a register which is necessary in a

embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

pipeline design. This also applies to the VHDL PIC pipeline architecture. Most of the registers
and all of the data memory (register file) are single-ported and cause structural hazards.

Data hazards are generated by data dependencies e.g. when two or more instructions in the
pipeline need access to the same memory position. Additionally, writing to one register may
effect the execution of other instructions, e.g. updating the status register can influence the
address building process. The most frequently data hazard occurring is a read after write
hazard (RAW): One memory position is still in the pipeline and needs to be written back in
WRITE while a subsequent instruction needs to read this memory position with the new
value, but memory still holds the old numbers. Normally, the reading instruction and all sub-
sequent ones must be halted until the write is performed to avoid invalid execution. The data
hazards which can occur in the VHDL PIC are [10]:

Address building data hazards. The address is built by using bank bits in the status
register or from the complete FSR register when using indirect addressing. Changes to
one of these registers have to be completed before another valid address can be built.

RAW hazards. Read after write hazards occur when a memory position has to be read
while a write to the same memory position is still to be performed. Thus the read will de-
liver an invalid result.

Flag hazards. Many instructions depend on the internal state of the microcontroller.
When the flags in the status register are not updated before another instruction uses
them during its execution the result may be invalid.

Data hazards when writing PCLATH. Building the new program counter (PC) when per-
forming a branch (call, goto, write to PCL) is always depending on the PCLATH register
holding the upper bits for the destination address. When the PCLATH register is written
jumps have to be delayed to prevent an invalid program memory read.

Peripheral hazards. Peripheral registers are updated in WRITE and can have depend-
encies to other (peripheral) registers. So ports can be programmed as input or output by
setting the respective direction register. If at least one bit of a port is an input, the direc-
tion register has to be written in WRITE before a new input value can be read.

All branches cause so-called control hazards. Normally, the pipeline is starting a new instruc-
tion every clock cycle. When detecting a branching instruction then the subsequent instruc-
tions which are already in the pipeline become invalid. Theses instructions have to be de-
leted from the pipeline to prevent incorrect updates in the microcontroller units. The program
counter is loaded with the new execution position and the pipeline needs to be filled again.
The possible control hazards in the VHDL PIC are:

Unconditional jumps: The PC of the next instruction is built from two bits of the PC-
LATH register and eleven bits of the jump opcode or fetched from the stack. GOTO/CALL
jumps to a new position in program memory resp. to a subroutine (using stack). RE-
TURN/RETLW/RETFIE returns from a subroutine normally resp. with loading a literal
value into the W register or returns from interrupt service routine (all returns using stack).

Conditional jumps: The branch is performed only if the checked condition is true. In fact
these instructions only skip the following instruction with a true condition. Otherwise nor-
mal execution of the subsequent instruction occurs. DECFSZ/INCFSZ decrements/incre-
ments an operand and skips the subsequent instruction if result is zero. BTFSC/BTFSS
tests a single bit of an operand and skips the following instruction if the bit is zero/set.

Computed Jumps: A write to PCL (PC low byte) causes a branch (computed jump). All
byte orientated file register operations with PCL as write target produce a write to PCL.

Interrupts: An interrupt suspends the normal program execution due to a predefined
event and continues at PC = 0x004, where the interrupt service routine starts.

embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

5 Handling the Hazards

The hazards in the VHDL PIC architecture described in the previous chapter have to be han-
dled to obtain a valid and fast program execution.

The VHDL PIC owns a Harvard architecture, so there are different memories and busses for
program code and data already in the standard architecture. This limits problems with struc-
tural hazards. An incrementer for the PC is available in the non-pipeline version, too. To real-
ize simultaneous read and write access the file register is implemented as a dual-port RAM
using the Xilinx Block RAM feature and dedicated registers work dual-ported, too. Different
busses for reading and writing allow exclusive access to respective units.

Fighting data hazards is one of the most important parts in designing a pipeline. Mechanisms
detecting, preventing or resolving them have a great impact on the whole design. All data
hazards need to be detected on the basis of (operand) write addresses in READ in the data
hazard detection unit. All instruction combinations which can cause a data hazard are classi-
fied into so-called condition instructions and so-called trigger instructions [10]. Condition in-
structions initiate a potential hazard by writing a result too late for directly following reads. If
the following code does not access the results of the condition instruction no hazard is cre-
ated. If an (trigger) instruction needs the results of the condition instruction before they are
written it activates the data hazard. Generally, the data hazard detection unit monitors all
instructions and detects possible condition instructions. Their operand addresses are stored
and compared against addresses of the two subsequent instructions. In addition, the results
of condition instructions are kept in a two-stage shift register for so-called data forwarding.

Figure 4: The EXCUTE stage with data forwarding of results

In case of a data hazard the pipeline normally has to be stalled for up to two cycles to deliver
a correct result. A well known mechanism to prevent loss of cycles due to waiting for valid
data is data forwarding. The data input of the EXECUTE stage can choose between different
input sources which can be the data from READ, the result of the previous instruction or the
result of the instruction two cycles before (see Fig. 4). Thus, the EXECUTE stage can work
with the results of previous instructions directly instead waiting until these results are written
to memory and then read from there. The resolution of the possible data hazards of the
VHDL PIC architecture (compare to chapter 4) is implemented as follows:

Address building data hazards: Building the address as late as possible in the pipeline
reduces the loss of cycles; therefore it is located in READ stage. The status register is
updated in EXECUTE to reduce losses during address building. If a write to status is de-
tected in READ the subsequent instruction is halted for one cycle to prevent invalid pro-
gram execution. Writing to FSR register is implemented in EXECUTE, too. If the subse-
quent instruction uses indirect addressing the pipeline is halted for one cycle.

embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

RAW hazards: These hazards can be eliminated by using data forwarding as described
above. The W register is written in EXECUTE, so it is always valid.

Flag hazards: The flags may be changed by an instruction with the status register as
write target. This produces a loss of one cycle, see address building data hazards. In ad-
dition, flags are changed by many instructions to signal internal results writing the flags in
EXECUTE. When a subsequent instruction has to read the flags from the status register,
status is forwarded to the ALU input in EXECUTE instead of the read data from READ.
Therefore no loss occurs when reading flags.

Data hazards when writing PCLATH: As mentioned above PCLATH is involved in build-
ing a new PC. Writing to PCLATH forces subsequent CALL/GOTO instructions to wait for
storing of the new PCLATH value before they can execute. To speed up branch instruc-
tions PCLATH is written in EXECUTE and forwarded to FETCH to build a new PC while
the write to PCLATH is executing.

Peripheral hazards: A write to a PORT is normally done at the end of WRITE; the new
value is ready to be read one cycle later due to sampling mechanisms. A PORT can not
be forwarded, because some of its bits can be declared as input (by writing to the respec-
tive TRIS register) and an input can not be forwarded. So it takes three cycles after de-
tecting a write to a PORT or its respective TRIS register in READ, before the PORT can
be read. This is the only data hazard where acceleration by forwarding is impossible.

Detecting control hazards in the pipeline as early as possible reduces loss of cycles. So the
best way is to detect all jumps in FETCH and build the jump destination there. But this is not
easy to implement due to instructions in the pipeline that impact on the jump or information
for detection that is not yet available. The control hazards differ in the stage where they can
be detected and the location where the jump destination is built: Some of the control hazards
are making use of the ALU either to decide to skip or not, or to calculate the new PC. For a
computed jump the address has to be computed in EXECUTE, too. Without optimization the
pipeline needs to halt until the result is calculated. The handling of the possible control haz-
ards of the VHDL PIC architecture (compare to chapter 4) is implemented as follows [11]:

Unconditional jumps: An unconditional jump is detected by analyzing its opcode in DE-
CODE and signaled to FETCH. The jump destination address is built from eleven bits
from the opcode and two from the PCLATH register and used to read the instruction code
from the program memory in FETCH in the same cycle as it is detected. Therefore no
loss of cycles is produced. (For stack handling see chapter 6.)

Conditional jumps: All conditional jumps are detected in DECODE, but the instruction
has to pass EXECUTE where the test is made before the address of the next valid in-
struction is known. In modern processor architectures branch prediction is used to handle
conditional jumps. Because the VHDL PIC’s conditional jumps only skip or execute the
subsequent instruction complex branch prediction is not necessary. Instead, all condi-
tional jumps are assumed to not skip the next instruction, some kind of static branch pre-
diction. When the forecast is true no cycles are lost. In case of a wrong prediction the
subsequent instruction has to be flushed from the pipeline. Often a conditional jump is fol-
lowed by an unconditional jump (loop), which means that the instruction in DECODE is
the target of the unconditional jump and has to be flushed from the pipeline, too. In case
the unconditional jump is falsely skipped (loop end) the pipeline has to be restarted with
the PC of the conditional jump plus two. This generates a two cycle loss where one of
these cycles belongs to the skipped instruction.

Another aspect is to make sure a wrong prediction does not invalidate the stack. There-
fore the respective stack pointers of every instruction (see chapter 6) are stored and re-
loaded with their values when a prediction shows to be wrong. Only the stack pointers
need to be restored, the stack entries never become invalid.

embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

Computed Jumps: A computed jump is detected in READ. Then the instruction in DE-
CODE is flushed from the pipeline because it is invalid. Additionally, building of a new PC
and stack access is inhibited in FETCH. One cycle later, when the instruction is in EXE-
CUTE, the result is forwarded to FETCH where the new PC is built and the instruction
now in DECODE is flushed from the pipeline. This ensures that no internals (e.g. stack)
are manipulated in an illegitimate way.

Interrupts: An interrupt is used for fast reaction on events. Therefore the interrupt func-
tionality is implemented in a way that the microcontroller enters the ISR as fast as possi-
ble after an interrupt occurrence. When an interrupt occurs the PC is loaded with 0x004
where the ISR is located and the return address of a valid instruction is stored on the
stack. Due to detected or still undetected control hazards it is not easy to decide which
instruction is valid. Generally, the address of the instruction in READ is used as return
address and the instruction in EXECUTE is the last executed before the ISR. Therefore
only a computed jump or a conditional jump in EXECUTE can invalidate the instruction in
READ. In that case the destination address of this branch is stored on stack. If the in-
struction in READ is an unconditional jump then this instruction is already executed and
may have changed the stack. Therefore the destination address of this instruction is
saved on the stack and the stack pointers are adjusted.

A summary of the loss of cycles generated by the different hazards is given below:

Address building hazards: one cycle delay, due to waiting for the new bank bits before
another address can be built. Writes to the status register are seldom and the loss can
even be reduced by the programmer if a write to status is not followed by a file register
instruction. The same applies for using indirect addressing after a write to FSR register.

RAW hazards: no loss, all hazards are eliminated by data forwarding.

Flag hazards: no loss, for writing status see address building hazards.

Data hazards when writing PCLATH: one cycle delay – the loss can be reduced by the
programmer: do not use a write to PCLATH followed by a CALL or GOTO instruction.

Peripheral hazards: up to two/three, can partly be reduced by sorting the instructions.

Unconditional jumps: no loss.

Conditional jumps: dependent on the behavior of the conditional jump – no loss, if no
skip; one cycle delay if no unconditional jump is skipped and two cycles if an uncondi-
tional jump is skipped.

Computed jumps: two cycles delay – cannot be accelerated without spending a lot of
hardware (reduction of maximum clock frequency)

Interrupts: normally two cycles – there are positive side effects with other control haz-
ards, their losses are reduced then.

The original VHDL PIC needs four cycles to execute one instruction (fetch is performed in
parallel) without any loss from data hazards, but all branches need additional four cycles.
Thus all control hazards (except not skipping conditional jumps) need eight cycles to be per-
formed. Compared to that, the loss of cycles in the pipelined VHDL PIC is always very low.

6 The Implemented Pipeline
This chapter describes the structure of the complete pipeline, for the principle configuration
see Fig. 3. The purpose of the FETCH stage (see Fig. 5) is to build the PC for the next in-
struction and to read the instruction code from the program memory. Additionally, the stack
handling is located in this stage. The PC is built asynchronously and accesses the program
memory where the opcode is read with the falling edge; the PC is concurrently stored in a
register. The building of the PC depends on control hazards and is controlled by signals from

embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

DECODE, READ and EXECUTE. When no control hazard is detected the PC is incremented
to build the new PC. The PC is saved (PC Branch) for another cycle for restarting the pipe-
line in case of a falsely skipped unconditional jump. All control hazard information goes to
this stage; thus, signals for flushing instructions from the pipeline are set here, too.

As the stack is only for return addresses and not for data, this makes handling of the stack
not too complex. The stack is implemented as a dual-port Block RAM with one port for write
and one for read access. Thus, it is possible to read a return address or to write a return ad-
dress simultaneously. The reading and writing ports have their own stack pointers. They are
stored for two cycles to allow for restoring them in case of a falsely stack access due to a
conditional jump. In case of a subroutine call the PC is saved on the stack and the stack
pointers are incremented; in case of a return the already accessed return address is used to
build the PC and the stack pointers are both decremented.

Figure 5: Structure of the FETCH stage

In the DECODE stage the opcode of the instruction read from the program memory is ana-
lyzed and signals for later stages are set for execution of this instruction. These signals are
also used to detect control hazards. A detected control hazard is signaled to FETCH.

In the READ stage (see Fig. 6) the address for file register access is built and used for read-
ing the data memory on the rising edge of the clock. The data read is stored in the pipeline
register altogether with the information from former stages. The data hazard detection unit is
located in READ, too. It uses the addresses for read or write access to detect any sort of
data hazards and eventually sets appropriate signals for eliminating data hazards for halting
the pipeline or activating data forwarding.

Figure 6: Structure of the READ stage

embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

The EXECUTE stage (see Fig. 4) computes the result of the instruction depending on the
inputs from the earlier stages. Therefore it includes the arithmetical logical unit to execute the
instruction and calculate its result. The ALU is controlled by several signals passed on from
earlier stages, mainly from DECODE. Some define the inputs of the ALU and others select
between the different modes of the ALU. This stage decides whether a conditional jump
skips or does not skip the subsequent instruction. Therefore a signal goes to FETCH to sig-
nal a skip. Additionally, the PCLATH and the result are forwarded to FETCH for fast reaction
on control hazards. Some dedicated registers are written in this stage e.g. status, to reduce
execution time. In the WRITE stage only data is written back to the file register.

7 Results
The implemented pipelined VHDL PIC was compared to the standard VHDL PIC. At present
the pipeline runs with 66 – 70 MHz without any optimization versus 100 MHz in the standard
version due to increase in hardware and complexity. In spite of that, processing is rising sig-
nificantly. Two benchmark programs shall give an impression of the acceleration of the proc-
essing speed (see Tab. 1). The first one is a program which demonstrates usage of some
peripherals on the Spartan3 starter kit board – a typical embedded program including a delay
loop with four instructions. Here the positive effects of the control hazard handling show up.

Table 1: Acceleration of processing speed

Program Standard (cycles) Pipelined (cycles) Ratio Speedup (x 70/100)

Embedded I/O 1,249,700 250,452 4.99 3.49

Floating Point 3,348 1,007 3.32 2.33

The second program calculates a 32-bit floating point division. Here 106 of the 707 executed
instructions test bits with 75 jumps taken, the static prediction being false. The speedup is
lower due to the price paid for the control hazards. Though this code is atypical for microcon-
trollers it marks the lower limit of acceleration. Typical programs speedup in the range of 3.

Pipeline implementation and hazard handling increase the hardware requirements. As Tab. 2
shows from the map report, typically only 28% additional resources are needed (results after
synthesis are comparable). Most of the extra hardware is used to implement the data hazard
detection unit followed by the input multiplexers etc. of the PC and of the ALU.

Table 2: Usage of resources

Map report (total) Pipelined Standard Increase in hardware

Number of slices (1,920) 772 (40%) 601 (31%) +28%

Slice Flip Flops (3,840) 515 (13%) 356 (9%) +45%

4 input LUTs (3,840) 1,097 (28%) 864 (22%) +27%

8 Discussions
A five-stage pipeline version of a PIC®-compatible microcontroller core has been developed
for a Xilinx Spartan-3 FPGA to study the actual problems in pipeline development. The de-
sign, the structure and the problems as well as solutions and the achieved performance of
the pipelined microcontroller were discussed. In its five stages FETCH, DECODE, READ,
EXECUTE and WRITE occurring data hazards are handled efficiently by the data hazard
detection unit. Most of the time data forwarding can be used, thus eliminating any cycle

embedded world 2009
Design and Implementation of a FPGA-based Pipelined Microcontroller

losses due to data hazards. Control hazards inferred by various kinds of branches have to be
dealt with not to loose the performance of the pipeline: Unconditional jump, call and return
instructions are carried out without any cycle losses. Conditional jumps executing or skipping
the following instruction are assumed to execute the following instruction – a kind of static
branch prediction. If the assumption is correct no cycles are lost (typically true for over 90%
in loops and for 50% in standard branching). In case of a false prediction the subsequent
instruction is invalid and has to be deleted from the pipeline (one or two cycles lost). Perform-
ing computed jumps and interrupts cost two cycles, too.

The loss of cycles due to data and control hazards is reduced to a minimum with an increase
of only 28% in hardware resources; very few losses are left e.g. due to waiting for necessary
calculations in the EXECUTE stage for seldomly used instruction combinations. In those
cases waiting seemed more effective than spending additional hardware. At present, the
pipelined VHDL PIC controller runs at 70 MHz with approximately 1 CPI delivering a three-
fold performance increase over the conventional FPGA design and a factor of 14 compared
to standard products. The source code will be available for non-commercial usage at [12].

9 References
[1] Microchip Technology Inc.: PICmicro Mid-Range MCU Family Reference Manual. Chan-

dler, Arizona, 1997.

[2] Cramm, I.: Entwicklung eines PIC-kompatiblen Mikrocontrollerkerns in VHDL. Diploma
Thesis, University of Applied Sciences Braunschweig/Wolfenbüttel, Germany, 2003.

[3] Bermbach, R.: Entwicklung eines Mikroprozessorkerns. Research Reports, University of
Applied Sciences Braunschweig/Wolfenbüttel, Germany, 2003/2004.

[4] Andreas, V.: Optimierung eines PIC-kompatiblen VHDL-Mikroprozessorkerns. Diploma
Thesis, University of Applied Sciences Braunschweig/Wolfenbüttel, Germany, 2004.

[5] Kupfer, M.: Entwicklung der Hard- und Software eines Debug-Moduls für einen VHDL-
basierten Mikrocontrollerkern. Diploma Thesis, University of Applied Sciences Braun-
schweig/Wolfenbüttel, Germany, 2005.

[6] Bermbach, R., Kupfer, M.: Development of a Debug Module for a FPGA-based Micro-
controller. IFAC Workshop on Programmable Devices and Embedded Systems, p. 275-
280. Brno, Czech Republic, 2006.

[7] Germann, U.: Erweiterung eines Debug-Moduls für einen VHDL-basierten PIC-kom-
patiblen Mikrocontroller um Hardware Watches und einen Trace Buffer. Diploma Thesis,
University of Applied Sciences Braunschweig/Wolfenbüttel, Germany, 2007.

[8] Hennessy, J.L.; Patterson, D.A.: Computer Architecture: A Quantitative Approach. 4th
Edition, Morgan Kaufmann, San Francisco, 2006.

[9] Kupfer, M.; Bermbach, R.; Patz, R.: Implementation of a Multi-stage Pipeline for an 8-bit
Microcontroller. Procceedings of the 1st Research Student Workshop 2007, p. 109-110.
University of Glamorgan, Faculty of Advanced Technology, Pontypridd (Wales), Great
Britain, 2007.

[10] Breustedt, P.: Analyse und Behandlung von Datenhazards in der Pipeline eines VHDL-
Mikrocontrollers. Diploma Thesis, University of Applied Sciences Braunschweig/Wolfen-
büttel, Germany, 2007.

[11] Krüger, M.; Meinecke, A.; Renz, A.; Weiß, N.: Behandlung von Kontrollflusshasards in
einer fünfstufigen Pipeline. Project Thesis, University of Applied Sciences Braun-
schweig/Wolfenbüttel, Germany, 2008.

[12] http://public.fh-wolfenbuettel.de/~bermbach/vm/vhdlmicro.htm

