
DEVELOPMENT OF A DEBUG MODULE FOR A FPGA-BASED MICROCONTROLLER

Rainer Bermbach, Martin Kupfer

 University of Applied Sciences Braunschweig/Wolfenbuettel, Germany

Abstract: Description of the development of a debug system for a PIC™-compatible SoC
microcontroller implemented in a FPGA. The debug module comprises a hardware
interface in VHDL, which communicates with the respective microcontroller components
and a software application to present the relevant information to the user and to allow for
convenient control of microcontroller functions. Communication between front-end and
back-end is accomplished via the JTAG port. The debug module allows easy non-
interfering debugging of software for the SoC microcontroller. Copyright © 2006 IFAC

Keywords: debugging, microprocessor, hardware, SoC, VHDL, JTAG port.

1. INTRODUCTION

Today, convenient debugging of embedded system
software is more or less state of the art. Powerful in-
circuit emulators or on-chip hardware assisted de-
buggers help engineers to develop the programs for
all those embedded systems based on standard
microcontrollers and microprocessors. Typically,
difficulties arise when working with IPs of proces-
sors and controllers for building a system-on-chip
(SoC). Usually, one has to utilise old-fashioned
software debuggers which require at least some
system resources by themselves. Interference of the
debugger with the target device hinders real-time
debugging and often makes full system tests
impossible.

At the Computer Engineering Lab of the University
of Applied Sciences Braunschweig/Wolfenbuettel a
PIC™-compatible microcontroller called VHDL-PIC
had been developed and optimised in former pro-
jects, see (Bermbach, 2003; Cramm, 2003; Berm-
bach, 2004; Andreas, 2004). The VHDL-based
controller, fully compatible to the cores of the
PICmicro™ mid-range MCU family, features typical
peripherals such as ports, timer, UART, etc., at a
frequency of up to 100 MHz, i.e. with processing
power of up to 25 MIPS.

When using the microcontroller in FPGA implemen-
tations all the above mentioned difficulties arose. De-
bugging of system software turned out to be trouble-
some and tedious. In addition, all software changes
had to be run through the software development sys-
tem. Then the code needed to be transformed into
VHDL ROM initialisation code and finally, all the
steps of the hardware implementation process had to
be performed again. For each error correction all of
the above mentioned steps needed to be repeated
which was not very effective. To bypass all those
problems the idea of an on-chip hardware assisted
non-interfering debugger with direct code download
was born, see (Kupfer, 2005). The debug module is
comprised of a hardware interface (back-end) written
in VHDL, which communicates with the respective
microcontroller components and a Microsoft Win-
dows™ based software application (front-end) to
present the relevant information to the user and to al-
low for convenient control of microcontroller func-
tions. Communication between front-end and back-
end is accomplished via the JTAG port which is
available on the FPGA. The debug module allows
easy non-interfering real-time debugging of the SoC
microcontroller.

The development and implementation of that
debugging system is presented in this text. In the

following section a system overview will be given,
whereas section 3 describes the hardware interface.
Section 4 discusses the implemented debugging
functions and section 5 the structure of the back-
end/front-end communication. Section 6 gives some
detail on the front-end and its implementation and
passes over to the conclusion.

2. SYSTEM OVERVIEW

The configuration (see fig. 1) for developing SoC
hardware and software with the available VHDL-PIC
microcontroller is comprised of a PC running Win-
dows XP™ and a FPGA development board from
Digilent Inc. which carries a 200k gate Spartan 3
FPGA from Xilinx. On the PC the free integrated
development environment (IDE) MPLAB™ v7.01
from Microchip is used to input source code and
assemble it into Intel Hex encoded executable form.
Additionally, MPLAB™ may be used to do first
software simulations running the built-in simulator.

By means of the graphical user interface (GUI) the
user selects the program code to be run on the
VHDL-PIC and sends it via the debugging software
to the FPGA where it is loaded into internal Block
RAM memory configured as ROM. Communication
occurs through a parallel port driver serving the
JTAG port (IEEE 1149.1) on the FPGA development
board. The communication interface inside the
FPGA, the so-called TAP controller, handles all read,
write and communication requests between the
hardware interface and the debugging software.

In addition, VHDL development takes place on the
PC utilising Active VHDL™ (Aldec) whereas soft-
ware from Xilinx (ISE™ 6.3i) synthesises, fits,
routes and downloads any hardware code to the
Spartan 3 FPGA on the Digilent Spartan-3 Starter Kit
Board.

3. HARDWARE

This section describes the underlying architecture
and structure of the microcontroller as well as the
requirements and the implementation’s approach to
make the processor “debuggable”.

3.1 PIC Microcontroller Architecture

The PICmicro™ controller is a simple but powerful
8-bit processor with a Harvard architecture, a 14-bit
instruction word, a hardware stack, a work register
which may be involved in nearly every instruction
and an internal RAM space of up to 512 bytes organ-
ised in four banks, see (Microchip, 1997). The re-
gister file (general purpose RAM, GPR) is located in
that address space. All special function registers
(SFR) of the CPU and peripherals are mapped into
this space as well. The controller has single cycle in-
structions; only jumps, conditional jumps, calls and
returns require two cycles. It works with a 2-stage

P
C

 w
or

ks
ta

tio
n

FP
G

A
 b

oa
rd

 (D
ig

ile
nt

 In
c.

)

FP
G

A
 (X

ili
nx

 S
pa

rta
n

3)

JTAG port

communication I/F

parallel port driver

parallel port

Parallel Cable III
(Xilinx)

debugging
software

graphical user
interface

microcontroller

hardware interface

M
P

LA
B

 ID
E

Fig. 1. Block diagram of the development system

pipeline: One instruction is read while the previous is
decoded and executed. The machine cycle is divided
into four steps called Q1 to Q4. In Q1 the instruction
is decoded, in Q2 operands are read, in Q3 the ope-
ration is executed and in Q4 results are written back.

3.2 VHDL-PIC Structure

The VHDL-PIC core is fully compatible with the
PICmicro™ controller. It not only executes the same
instructions as its standard IC counterpart, it was also
designed to meet the publicly available timings of the
PICmicro™. So the machine cycle stages, interrupt
cycles, etc. are fully equivalent.

For an efficient implementation, the instruction ROM
uses the Block RAM feature of the Spartan 3 FPGA.
Up to two dedicated RAM blocks can be utilised as
program ROM giving a maximum code size of
4 Kbytes (2K x 16 bit). The GPR register file is also
implemented as Block RAM. The hardware stack
may be built from Block RAM or as dedicated flip-
flops which is defined in a special library,
MyPICPack. The library also determines the size and
memory locations of the GPR to adapt the VHDL-
PIC to various real PICmicro™ types. In addition, a
lot of other configuration data may be manipulated
by setting/resetting corresponding constants in the
library.

3.3 Debugging Hardware

The functions of the debugger can be divided into
hardware and software functions. The means to
directly start, stop, read and write, etc. have to be
implemented in the hardware interface to the pro-
cessor core.

First of all, the debugger has to stop the processor to
access its internal data. Stopping can only occur at a
certain point within the machine cycle (after Q4) so
the information gained gives a precise and correct
image of the machine’s current state. Stopping
should be performed upon special request (user
break) or upon fulfilling certain qualifying conditions
(watchpoints) or arriving at particular addresses in
code memory (code breakpoints). Starting the machi-
ne resumes processing.

To implement halting a new clock step Q0, located
between Q4 and Q1, was created. After finishing the
current machine cycle with Q4, the microcontroller
normally continues with Q1. Only upon a stop re-
quest from the debugger it enters Q0 where the clock
is stopped. In this state the controller performs no
action and the debug interface has full access to all
processor internals. The data and address busses can
be used as well as the read and write enable signals.
Restarting the machine simply means enabling the
clock again and resetting the entering condition for
the Q0 state.

The debugger needs read and write access to all the
internal registers, memory, SFRs, etc. Stopping the
processor grants the use of the internal busses and
signals to read and write all of them. Difficulties ari-
se when wanting to read or write the code memory or
the stack. Normally no paths to them exist which can
be reached via address and data bus. The dual-port
character of the used Block RAMs solves the prob-
lem, see (Clayton, 2002). Reading and writing
through the second port gives access to code memory
as well as stack. Using this feature enables code
download to the FPGA processor. For ease of imple-
mentation also the GPR is implemented as a dual-
port RAM.

As mentioned above, the PICmicro™ instruction
word is 14 bits wide. When implementing code
memory with Block RAM, this RAM is configured
as 16 bits wide. The upper two remaining bits can be
used to identify different breakpoint conditions
which can be written by the debugger. During the run
state, hardware checks the two bits to distinguish the
various stop conditions. Thus no machine code has to
be manipulated to implement breakpoints, etc. and
the maximum number of breakpoints is equivalent to
the number of code lines.

The above described method of gaining access to the
processor resources and data is fully transparent and
does not interfere with any normal operation of the
VHDL-PIC microcontroller. None of its resources
are blocked, no program space, no bytes of RAM nor
port pins or interrupts are used. This allows for
developing, testing and debugging of the micro-
controller software without any interference by the
debugger. The only limitation at the moment is that
information update can only be performed when the
processor is halted. However, the future imple-
mentation of trace buffers and dedicated hardware
watchpoints will soon allow for real-time informa-
tion acquisition.

4. IMPLEMENTED DEBUG FUNCTIONS

As mentioned above the major functions created for
debugging can be divided into hardware and software
solutions. The principle hardware approach was
described in the previous section. The currently im-
plemented functions are presented below.

4.1 Hardware Based Functions

The following hardware functions are implemented
in the debugging system.

Manual Stop: A manual stop halts the processor to
get full access to all memory areas. The new clock
step Q0 located between Q4 and Q1 is entered. In
this state the PIC™ performs no action and the debug
interface has full access. Data and address busses can
be used as well as the read and write enable signals.

Stop at Freely Defined Code Breakpoints: A code
breakpoint stops the PIC™ if the two upper bits at
the current program memory location are set. A
signal from the program memory module to the clock
module signals this event and the clock process stops
after finishing Q4 and entering Q0. Compare to
manual stop.

Run: The controller continues with processing after a
stop condition by leaving the Q0 state and entering
Q1. The formerly read instruction starts to be de-
coded and a new instruction (for the next cycle) is
read into the instruction register.

Single Step: Only one single instruction is performed
from stop to stop. The processor leaves the Q0 state
starting with Q1 and stops after finishing Q4 and re-
entering Q0. Single step is implemented with a
special signal in the clock module.

Read/Write a Memory Section: When the processor is
halted the debugger gains access to all dedicated
registers, RAM, SFR, stack and ROM (program
memory) by using the PIC™ busses or accessing the
second port of the dual-port memories.

Cycle Counter: This feature counts the executed
machine cycles by incrementing a 20-bit counter
when finishing Q4. The counter can be read or reset.

Reset: This performs a hardware reset by accessing
the reset component of the VHDL-PIC.

4.2 Software Based Functions

The following software functions are implemented in
the debugging system. They utilise the underlying
hardware features.

Set/Remove Breakpoints: Setting and removing code
breakpoints are implemented by first reading the
program memory at the required position and then
setting the bits 14 and 15 for establishing a break-

point or resetting them to delete a breakpoint. To
complete the command, the new program word is
written back into the program memory.

Run to Cursor: This is used to quickly reach a certain
position in the program. It detects the position of the
cursor in the code window of the debugger and sets a
temporary breakpoint. Then a run is performed. The
breakpoint will be cleared automatically once that it
has been reached and the processor is stopped.

Step Out of Current Subroutine: This function per-
forms a run and halts the controller on the first
instruction after the subroutine call. The hardware
stack of the PIC™ is only used for return addresses.
Therefore this functionality can be implemented by
setting a temporary breakpoint to the current valid
return address on the stack.

Step Over the Following Subroutine: When a call is
detected, a temporary breakpoint at the position of
the incremented program counter (the instruction
after the call) is set. If there is no call this is
equivalent to a single step.

Fill the Program Memory (ROM): This reads a new
program in Intel Hex format and loads the code into
the program memory. A reset is performed after-
wards and the new program can be executed.

4.3 Special Functions and Solutions

A special situation arises when code breakpoints are
placed after jump and call instructions. Due to the
instruction pipelining, a new instruction is read while
the current instruction is executed. Thus it is possible
to detect a breakpoint before the respective instruc-
tion is to be executed, which is used in the imple-
mented debugger. When a jump or a call is per-
formed the processor would stop at the breakpoint
though the following instruction is not executed.
Therefore a special signal is generated if the program
counter is not incremented but loaded. The same
applies to interrupts. When a breakpoint is not
reached due to the execution of an interrupt after the
previous instruction the processor stops at the
breakpoint after returning from the interrupt.

Some other hardware functions are used especially to
control the status of the processor. The “idle” com-
mand is used to get the return value of the previous
command. The return value of the command “PIC
run status” indicates whether the controller has
already stopped or is still running. This command is
mostly used to detect a stop at a breakpoint.

5. COMMUNICATION AND INTERFACE TO
DEBUG HARDWARE

The front-end of the debugger running on a PC needs
to communicate with the back-end implemented on
the FPGA. Simple debuggers often occupy the
UART interface of the microcontroller. This is

unacceptable for non-interfering debugging, so
another communication path had to be found. As
there is already a JTAG port in use to download
FPGA programming information this interface was
chosen for communication between hardware and
software of the debug module. This communication
path is defined by IEEE 1149.1 and is also the most
common method chosen for many built-in hardware
debuggers in standard microprocessors. A Xilinx
Parallel Cable III connects to the JTAG port on the
Digilent board and to the parallel port of the PC (see
fig.1). If running Windows XP™ access to all the
peripherals is controlled by the operating system
(OS) so a dedicated driver is needed to communicate
via the parallel port.

The JTAG port on the FPGA is driven by a TAP
(Test Access Port) controller. Apart from other
features Xilinx provides access to two user defined
shift registers called USER1 and USER2 via the TAP
controller. These shift registers are used for the com-
munication interface between the debugging software
and the hardware. As the TAP is actually a state
machine, a couple of steps, which are hidden in the
communication interface software, are necessary to
gain access to one of the shift registers. Special soft-
ware functions have been developed for navigating in
the TAP state machine (e.g. for addressing the two
user registers and for shifting commands, data or
addresses into and out of a user register).

The 8-bit USER1 register is used to transmit short
commands such as Stop, Run and Single Step. The
32-bit USER2 register is utilised for reading and
writing memory (including the dedicated flip flop
registers). Its 32 bits are subdivided into 16 bits for
data and 11 bits for address (2K instructions max.).
The last five bits select the memory area and
differentiate between read and write accesses.

If a response to a transmitted command is necessary
the respective register must be shifted again to re-
ceive the return value. That means, e.g. for reading
memory, first shift in the read command followed by
an idle command to receive the requested memory
value.

The parallel outputs of the two shift registers are
connected to the debug interface (see fig. 2). A signal
from the communication interface to the debug
interface indicates the reception of a new command.
Another signal from the debug interface indicates a
return value that has to be transferred into the shift
register. Finally this value is shifted out to the PC
with the next transmission.

The debug interface consists of two decoders which
analyse the output of the shift registers when a new
command is received. The decoder for the 32-bit
USER2 register is connected to the dual-port RAMs
(GPR, ROM, stack) and the busses for reading and
writing the memory of the PIC™. Dependent on the
command received, the decoder feeds the different
busses and signals for reading or writing the
requested memory area.

JTAG port
TAP controller

 communication I/F

USER1 USER2

 hardware I/F

decoder 1 decoder 2

new
comm.

new data

 microcontroller

clock

GPR, ROM,
stack, dedicated

registers

...
run stop...

...

...

co
m

m
an

ds

data/address

Fig. 2. Block diagram of the debug interface and its
connections

The requested value from a read process is stored in
the USER2 register and shifted out with the next
transfer. In a command, the upper 16 bits contain the
address. For security reasons this address is also
stored in the lower 16 bits of the return value. The
software client can hereby detect errors by
comparing the addresses.

Fig. 3. The front-end software GUI.

The decoder for the 8-bit USER1 register is
connected to the components of the processor to
initiate commands like run, stop, single step, step out,
etc.

To give an example, the communication sequence for
a manual stop is first transmitting a “stop” command,
then requesting the “PIC run status” and finally,
checking the return value with the “idle” command.
Once the controller is stopped, a signal marks this
state and the debug module has full access to
memory and registers. This signal is also evaluated to
generate the return value from the “PIC run status”
command.

6. FUNCTIONALITY OF THE SOFTWARE
FRONT-END

The software front-end is written in C making use of
WINAPI functions to implement the graphical user
interface (GUI) (see fig. 3). The main window
displays the most important information to the user.
There are additional windows for displaying the
program memory and the GPR (general purpose
register) contents. A watch window lists monitored
registers and their respective values. Watches can be
added or deleted and the value of each supervised
register may easily be changed. The most frequently
used functions (e.g. run or single step) are placed in
the toolbar as icons and can be executed by keyboard
shortcuts.

In the centre of the application window a code win-
dow lists the currently loaded code of the processor.
In this window, breakpoints can be set or deleted
with a mouse click in the respective line. A “BP” at
the beginning of a line marks each breakpoint.

As it is helpful to see the source code of the pro-
cessor in the code window, a function automatically
writes the code into this area by reading the
information out of the list file previously created by
MPLAB™. This reduces development turn-around
time from minutes to seconds. All symbols are read
as well and stored in the watch list. This way the user
does not have to memorise the address of a symbol
but can choose from a list by symbolic name. The
current program counter is shown in this window by
highlighting the respective line.

Adjacent to the code window all important registers
are displayed divided into sections for special func-
tion registers (SFR), stack and ports. In the stack
section a red arrow marks the current valid stack
position. All values of the registers may be changed
with the exception of the stack contents.

A software timer checks the status of the micro-
controller by transmitting the “PIC run status”
command while the processor is running to detect a
break. If it is stopped (manual stop or at a breakpoint,
etc.) the client software reads all important memory
areas and refreshes the main window with the new
data. Upon refreshing, new and old data are com-
pared and changes are marked in red.

7. CONCLUSION

The typical difficulties when debugging system-on-
chip processors and controllers triggered the deve-
lopment of a powerful hardware-assisted non-inter-
fering debugging module with direct code download.

The debug module consists of a hardware interface
and a debug interface both written in VHDL, which
communicate with the respective microcontroller
components and with the communication interface.
The latter supports the transfer of commands and
data via the JTAG port to and from a connected PC.
It further includes a debugging software and a
powerful GUI application running on the PC to
present the relevant information to the user and to
allow for convenient control of microcontroller
functions.

The debug module allows easy non-interfering real-
time debugging of software for the SoC micro-
controller. It allocates no resources of the micro-
controller i.e. no program code, RAM cells, inter-
rupts or communication facilities. It provides typical
and advanced functions needed for debugging
microprocessor code such as run, stop, single step,
breakpoints (max. number equivalent to number of
code lines), step over subroutines, step out of
subroutines and run to cursor in code window.
Naturally, it allows inspection and modification of all

registers and memory locations as well as download
of new program code avoiding tedious re-synthesis,
etc. of the FPGA hardware.

Currently the design allows clock frequencies of up
to 80 MHz which can probably be increased in the
near future when better qualification of timing paths
is realised.

Because of the layered approach, the design should
easily be adaptable to other processors. The main
adaptations will obviously lie in the hardware inter-
face. Some smaller changes will affect the GUI
elements and the debugging software depending on
the architecture of the processor.

Currently, developments are underway to enhance
the debug module with hardware watchpoints and a
trace buffer. With the freely definable watchpoints,
one can monitor arbitrary memory locations in GPR
or SFR to detect reading from, writing to, or
changing of their contents, etc. The trace function
will use Block RAMs to store all relevant infor-
mation (addresses, data, status signals, etc.) of
internal events. This will dramatically ease code
debugging through real-time data acquisition for later
offline inspection which will be especially useful for
true real-time processing, for example, with inter-
rupts.

REFERENCES

Andreas, V. (2004). Optimierung eines PIC-kom-
patiblen VHDL-Mikroprozessorkerns. Diploma
thesis. University of Applied Sciences Braun-
schweig/Wolfenbuettel, Germany.

Bermbach, R. (2003). Entwicklung eines Mikropro-
zessorkerns. Research report. University of Ap-
plied Sciences Braunschweig/Wolfenbuettel,
Germany

Bermbach, R. (2004). Entwicklung eines Mikropro-
zessorkerns – Bericht über die zweite Phase.
Research report. University of Applied Sciences
Braunschweig/Wolfenbuettel, Germany.

Cramm, I. (2003). Entwicklung eines PIC-kompatib-
len Mikrocontrollerkerns in VHDL. Diploma
thesis. University of Applied Sciences Braun-
schweig/Wolfenbuettel, Germany.

Kupfer, M. (2005). Entwicklung der Hard- und Soft-
ware eines Debug-Moduls für einen VHDL-ba-
sierten Mikrocontrollerkern. Diploma thesis.
University of Applied Sciences Braunschweig/
Wolfenbuettel, Germany.

Microchip Technology Inc. (1997), PICmicro Mid-
Range MCU Family Reference Manual. Chand-
ler, Arizona, USA.

Clayton, J. (2002). RISC 16f84. http://www.openco-
res.org/projects.cgi/web/risc16f84/overview.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

