

The following article is the final version submitted to IEEE after peer review; hosted by Ostfalia

University of Applied Sciences. It is provided for personal use only.

Time synchronization performance using

the network time security protocol

Martin Langer, Kristof Teichel, Dieter Sibold and Rainer Bermbach

© 2019 IEEE. This is the author’s version of an article that has been published by IEEE.

Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

Full Citation of the original article published by IEEE:

M. Langer, K. Teichel, D. Sibold and R. Bermbach, " Time synchronization performance using the

network time security protocol," 2018 European Frequency and Time Forum (EFTF), Turin, Italy,

2018, pp. 138-144, doi: 10.1109/EFTF.2018.8409017.

Available at:

https://doi.org/10.1109/ EFTF.2018.8409017

stratum 0:
atomic clock

stratum 1:
 time server

stratum 2:
server and clients

stratum 3:
clients

Fig. 1. Hierarchical structure of NTP time servers

Time Synchronization Performance Using the
Network Time Security Protocol

Martin Langer, Kristof Teichel†, Dieter Sibold† and Rainer Bermbach
Email: mart.langer@ostfalia.de, kristof.teichel@ptb.de, dieter.sibold@ptb.de, r.bermbach@ostfalia.de

Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
†Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

Abstract—This paper compares the time synchronization per-
formance of standard NTP versus NTP secured using the Net-
work Time Security (NTS) protocol. The measurements were
performed using the NTS software of Ostfalia University of Ap-
plied Science – the first implementation of NTS based on the
IETF internet draft “draft-ietf-ntp-using-nts-for-ntp-06”. The
measurements quantify the impact of the security measures on
the time synchronization performance and allow conclusions to
be drawn regarding efficiency and potential improvements to the
protocol.

Keywords—Network Time Security (NTS); Network Time
Protocol (NTP); security; authentication; integrity

I. INTRODUCTION

Time synchronization of networked computer systems is of
paramount importance for the correct functioning and interop-
erability of many computer applications. The protection of time
synchronization protocols is vital in order to both counter exist-
ing threats and comply with legal requirements. To date, time
information has usually been disseminated in an unsecured
form that creates opportunities for adversaries to maliciously
alter time information [1]. An important and widely used ex-
ample of a tool for disseminating time information is the Net-
work Time Protocol (NTP) [2-4]. NTP meets the accuracy re-
quirements of many application fields but offers only limited
security measures. An analysis of security mechanisms specific
to NTP demonstrated that they were either not secure or un-
suitable for practical use [5]. This prompted the development
of Network Time Security (NTS), which is currently in the
final specification procedure. NTS was designed to solve the
known security issues of NTP without sacrificing the accuracy
and stability provided by the time synchronization process us-
ing standard NTP.

In this paper, we measure the impact of NTS concerning
the efficiency and time synchronization performance of NTS-
secured NTP. The measurements presented here are based on
the NTS version defined by a set of three internet drafts: draft-
ietf-ntp-using-nts-for-ntp-06 [6], draft-ietf-ntp-network-time-
security-15 [7], and draft-ietf-ntp-cms-for-nts-message-06 [8].
These drafts were implemented by the Ostfalia University of
Applied Sciences in cooperation with PTB [9] and refined in
follow-up work, which has now been used to analyze the es-
sential properties of this NTS version. Chapter II introduces the

reader to the technical aspects of NTP and NTS. Chapter III
describes the measurement setup, while the results of the
measurements are presented and discussed in Chapter IV. This
analysis also allows the inefficient steps in the NTS protocol to
be identified; this information can be used to improve such
protocol steps in the ongoing specification process.

II. PRELIMINARIES

This section gives an overview of the main aspects of NTP
and NTS, to the extent to which they are relevant to the work
presented.

A. The Network Time Protocol (NTP)

One of the most widely used protocols for clock synchroni-
zation worldwide is NTP, which is deployed on nearly every
computer system in existence. Developed by David L. Mills in
1985 and presented in the IETF’s RFC 958 [3], its Version 4
(NTPv4) has been available as RFC 5905 [4] since 2010. NTP
communicates via packet-switched networks using the connec-
tionless communication model of the UDP internet protocol to
send and receive timestamps. What is most commonly used is a
client/server model combined with a hierarchical structure as
seen in Fig. 1. Available time servers are categorized according
to their distances from the reference clock. Each level is called
a stratum and given a number according to the distance. A ref-
erence clock would be stratum 0, the time server on the level
below would be stratum 1 and so on. As the stratum number
increases, the accuracy typically decreases.

T1

T2 T3

T4

Fig. 2. Timestamps used in the NTPv4 Protocol

NTP uses different modes of operation that determine the
kind of communication between NTP protocol objects. In
symmetric mode, an NTP instance can distribute time infor-
mation as well as receive it. It synchronizes its clock via cali-
bration with servers of the same stratum. In broadcast mode, a
server periodically transmits time information that can be used
for clock synchronization by any NTP client that receives it.
NTP’s most prominent mode is the client/server mode, which
applies a unicast communication model. In this mode, a client
transmits time requests to an NTP server (once or periodically),
whereupon the server responds by sending the time information
required [2, 4]. In client/server mode, clock synchronization
between an NTP client and an NTP server applies a two-way
time transfer approach [10]: At time t1, the client sends an NTP
packet to the server containing the timestamp T1 = T(t = t1).
Upon arrival at time t2, the server processes the packet, and at
time t3, it inserts the timestamps T2 and T3 and transmits the
packet back to the client, where it is received at time t4. This
communication yields the four timestamps displayed in Fig. 2.
Note that the clock at the client produces the timestamps T1, T4
and the clock at the server creates the timestamps T2, T3.

From these timestamps, the NTP client can derive the net-
work delay δ and the time offset θ between the client and the
server. Note that  represents the packet round-trip time ex-
cluding the computing time at the server, indicating the time
the packets have traveled in the network. Calculation of θ and 
is done according to the following equations [2, 4]:

  

  

Assuming that the propagation delay of the packets be-
tween the client and the server is the same in both directions,
the offset θ quantifies the time difference between the clocks of
the NTP client and its server. The NTP process continuously
aims to minimize θ by adjusting the frequency of the client’s
system clock.

1) Issues of Previous Security Measures
In most cases, NTP transmits the time synchronization

packets without any cryptographic protection. This allows an
adversary to alter, replay or dismiss time synchronization pack-
ets, or to inject false packets. A comprehensive list of known
threats to time synchronization protocols is compiled in
RFC 7384 [1].

To increase security, the symmetric key method was intro-
duced in 1992 as part of the NTPv3 protocol. It permits authen-

tication of NTP participants and ensures the integrity of the
transmitted time data by means of cryptographic hash func-
tions. Although this method is still considered secure, it does
not provide a key exchange mechanism or scale well for large
network deployments or for the global internet. In order to ad-
dress the scalability issue, the Autokey method was introduced
with NTPv4 and specified in the informational RFC 5906 [11].
However, an in-depth analysis of Autokey [12, 13] exhibited
severe security vulnerabilities. Therefore, Autokey is no longer
considered secure or recommended for use [14].

Tunnel solutions such as TLS (Transport Layer Security)
and IPSec offer another approach to adding security to time
dissemination. Although they provide a secure connection for
sending NTP packets, they entail two fundamental disad-
vantages. On the one hand, they require a permanent, stateful
connection between the server and the client. Such a connec-
tion involves many resources, especially on the server side. On
the other hand, tunnel solutions do not consider the unique re-
quirements associated with the dissemination of time infor-
mation, thus causing synchronization performance to decline.
Consequently, they are of limited use.

B. The Network Time Security Protocol

Originally motivated by demand for cryptographically se-
cured time synchronization mechanisms created within the
scope of the Smart Grid Initiative of the German Federal Min-
istry of Economic Affairs and Energy, the Network Time Secu-
rity (NTS) protocol offers a solution to the security problem. It
extends existing time synchronization protocols and thus al-
lows secure time synchronization in networks. NTS is currently
under development, but is approaching finalization and publi-
cation as a standards track RFC of the IETF. The present draft
version is draft-ietf-ntp-using-nts-for-ntp-11 [15].

The main goals of NTS are to enable NTP clients to cryp-
tographically identify their NTP servers, ensure authenticity
and integrity for exchanged time packets and ensure that the
time synchronization quality is impacted as little as possible.
To this end, an NTS-protected association between an NTP
client and a server is established in a first phase, the so-called
key exchange phase. In this stage, the client and server will
negotiate the cryptographic algorithms, exchange certificates
and generate cryptographic keys. In addition, the client will
verify the authenticity of the server by means of a Public Key
Infrastructure (PKI). In the subsequent phase, the participants
exchange secured time synchronization packets protected by a
Message Authentication Code (MAC), a digital fingerprint
enabling the detection of any data manipulation. See [5] for
further information. NTS does not require the NTP server to
save the state of the client. Instead, it utilizes stateful clients
and stateless servers. The server can process the requests of a
client based solely on the information provided in the request
packet.

III. MEASUREMENT SETUP AND CONFIGURATION

The goal of the measurements was to compare different
implementations (unsecured and secured NTP) in terms of their
performance, and to compare the resulting accuracy and stabil-
ity of the synchronized clocks. Hence, the tests recorded the

Fig. 3. Measurement setup with a direct client/server connection

Fig. 4. Composite of several measurement setups

time offset, the delay and the processing time of each imple-
mentation. The tests also considered the asymmetrical round-
trip time of NTS. To obtain consistent and comparable results,
identical conditions and simultaneous measurements were
fixed for all measurement setups. The hardware was based on
third-generation Raspberry Pi1 devices, all of which were in
closed standard boxes running identical software. They differed
only in the individual configuration of the NTP implementation
used and in their specific role in the communication process
(NTP server or client). Data was exchanged between the client
and the server via direct coupling using a Fast-Ethernet cable
connection2 (s. Fig. 3). In this way, one client always interacted
with one server. All Raspberry Pis were operated in headless
mode3 and controlled via Wi-Fi, which is already integrated in
these models. Thus, network traffic due to control messages
had no impact on the measurements. Several of these units
were assembled according to Fig. 4.

On the software side, the Raspbian lite operating system
[16] formed the base of the measurements. All services needed
by the system to synchronize the clock were set up manually
using three different NTPv4 implementations or configura-
tions. Two different realizations of NTP software were applied:
the so-called reference implementation provided by the Net-
work Time Foundation [17] (in the following referred to as
NTPD4), and the implementation given in [18] and referred to
throughout this paper as NTP. This realization offers an inter-
face to plug in NTS functions, thus enabling secured time syn-
chronization; we refer to this configuration as NTS or
NTP (NTS). The NTS service version employed [6] is opera-

1 Raspberry Pi 3 Model B Rev 1.2
2 100 Mbit bandwidth using LAN9514-Chip
3 No connection of other peripherals such as mouse, keyboard or monitor
4 Network Time Protocol (NTP) Daemon v4.2.8p10

tional in unicast client/server mode and is designed to ensure
security by embedding additional security data into existing
time transmission protocols without any further modification to
those protocols. In the case of NTP, this is accomplished by
encapsulating NTS-related content in NTP extension fields.
Such fields are defined in RFC 7822 [19]. Both NTPD and our
own NTS-secured NTP solution can each act as either a client
or a server.

The timestamps that an NTS-enabled NTP server transmits
during one measurement period are based upon its local time.
Since this setup does not include any further network connec-
tivity, there was no synchronization of the server’s own clock
to another party during the measurement. However, synchroni-
zation to external servers took place immediately before the
measurements and was suppressed deliberately during the
measurement periods in order to prevent potential fluctuations
of the server’s local time. In addition, the configuration regard-
ing NTS took place in an identical way in order to increase
comparability of the results.

NTS servers and clients each use local certification chains5
with 2048-bit RSA keys and with sha256WithRSAEncryption
as their signature algorithm. For authentication of the NTP time
packets, the HMAC_SHA512 algorithm was used. Further-
more, the NTP poll interval was set to 16 seconds on all NTP
clients. The typical duration of a measurement series in the data
presented was 48 to 72 hours. Each dataset started at midnight
and ended 24 hours later. The data was collected via the im-
plementation itself, which saves the (raw) data as text files.
Before a measurement series started, the devices went through
several hours of warm-up time; here, the NTP clients became
attuned to the same conditions as their servers. Additionally,
this enabled temperature control and thereby minimized the
quartz fluctuations that occur due to temperature differences. A
fully temperature-stable environment was not available at the
time of the measurement.

IV. MEASUREMENT RESULTS

The measurements listed here observe the essential aspects
of the NTS implementation and range from resource require-
ments and accuracy/stability achieved to non-correctible devia-
tions in the time synchronization.

A. Computational Cost and Resource Requirements

The more complex processing chain and the employment of
cryptographic functions6 in NTS increase processing times and
therefore the CPU power required. The values listed in Table 1
show the performance of the corresponding implementations
for comparison, each differentiated by the different roles as
client or server. Since the measurements were taken on rela-
tively weak single-board computers, computation times are
significantly higher than they would be in a desktop or server
system. However, the relationship between the values can be
expected to be preserved on a desktop computer. The processor
time required daily was determined based upon the execution

5 In each case, the primary certificate, two intermediate and one root cer-
tificate
6 The basis for this is the OpenSSL library in version 1.1.0

Fig. 6. Delay comparison between the different implementations

time of the NTP daemon and the actual processing time of the
CPU. To capture the values in Linux, the top and htop proces-
sor observation tools were used7.

The data demonstrates that an NTS client generates approxi-
mately six times the computing load of an NTPD client for
processing and transmitting the same number of NTP packets.
However, the cryptography employed affects the values only
marginally. A detailed analysis performed with the
KCachegrind profiler tool [20] revealed that an NTP client
with activated NTS functionality uses only 3 % of its required
CPU time for the actual computation of the MAC, and only 8
% for the NTS service. The majority of the NTS-specific CPU
time is consumed by the ASN.18 library (asn1c [21]), certifi-
cate processing, and debugging and logging functions em-
ployed. Furthermore, the direct comparison between NTPD
and Ostfalia’s NTP implementation indicates that there is po-
tential for optimization. However, due to the proof of concept
character of the implementation and the unfinished NTS speci-
fication, no effort to optimize this implementation has been
made yet.

B. Obtainable Synchronization Accuracy

This section discusses the synchronization quality that an
NTP/NTS client can achieve relative to its time server. Since
the NTP protocol must work from the assumption of symmetric
network delays, any asymmetry in packet transport times is
hard to correct. However, symmetric packet delays can be as-
sumed for the given measurement configuration because condi-
tions are deliberately uniform on all devices, including identi-
cal hardware and software, and because unnecessary external
devices such as routers in the network communication chain
are eliminated wherever possible.

1) Determination of Minimum Packet Delays
To improve the measurability of the efficiency of the

NTP/NTS service, assessment of the minimum possible packet
round-trip delays is important. These are delays that not even a
well-optimized implementation can go below. The necessary
measurements were performed by ping commands on the cor-
responding Ethernet interfaces of the devices employed. For
the fixed packet size chosen for this context, the payload (em-
bedded in IPv4) matched the size of an NTS-secured NTP
packet transported via UDP9. The diagram in Fig. 5 shows the

7 Recording and evaluation of values: ELAPSED, TIME and TIME+
8 Abstract Syntax Notation One
9 Refers to the NTS server's TimeResponse message. The complete UDP
frame thus has a total size of 152 Bytes.

development of the measurement that involved firing such a
ping four times per second. To minimize distortions during
these experiments, the data was saved directly into RAM and
console outputs were deactivated. The mean value detected of
0.49 ms and the standard deviation of 0.008 ms were consist-
ently found for all measurement objects, even under variation
of ping intervals during further tests.

2) Comparison of Delay and Time Offset between the
Implementations

After ascertaining the minimum delay in IV.B.1, the com-
parison of the recorded delays can indicate the efficiency and
the synchronization accuracy of the NTP services. The compar-
ison of these measurements can be seen in Fig. 6. This diagram
shows a 6-hour section of the various implementations. Each
program calculates and stores its own delay values. Note that,
in this case, the delay not only includes the round-trip time of
the packets, but also contains implementation-dependent de-
lays. As can be seen, the delay of NTPD is around 0.5 ms and
very close to the minimum delay determined. Therefore, this
service appears to be well optimized. By comparison, our own
NTP service shows higher delays in the range of 0.9 ms, as
well as a higher jitter. Hence, the missing optimizations and the
debug functions presumably have a direct effect on the syn-
chronization accuracies. Enabling NTS in this NTP service
yields an increased mean and jitter of the network delay (ap-
proximately 1.5 µs larger than the NTPD implementation), due
to the time needed for the ASN.1 encoding and the crypto-
graphic operations. The latter accumulate completely to the
delay, because the calculation of the MAC can only be per-
formed after adding the timestamps T1 or T3, respectively, to
the NTP packet.

Fig. 5. Minimally achievable round-trip times

TABLE I. COMPARING THE REQUIRED PROCESSING TIME

Implementation Role
CPU Time
per Day [s]

Average CPU Usage
[%]

NTPD Client 7.18 0.008

NTPD Server 6.57 0.008

NTP Client 25.46 0.029

NTP Server 11.28 0.013

NTP (NTS) Client 41.33 0.048

NTP (NTS) Server 22.85 0.026

Fig. 8. Delay/offset scattering in comparison

Due to the higher delay and jitter caused by NTS, the jitter
of the time offset also increases. The comparison in Fig. 7
shows the difference between the implementations in the same
6-hour measurement section. The standard deviation of the
time offset of 4.7 µs in NTPD is smaller than that of 7.9 µs in
NTP and much smaller than that of NTP (NTS), 11.6 µs. The
combination of delay and offset in a scattering diagram (s.
Fig. 8) additionally shows a positive bias of NTP and
NTP (NTS) due to the implementation.

3) Time Stability
Fig. 9 compares the time deviation (TDEV) of the different

measurements. The slope of the blue line (NTP/NTS) is ap-
proximately -0.5, which indicates a phase jitter with the charac-
ter of white phase noise. The slope for NTP (orange) and
NTPD (green) indicate that the noise processes are dominated
by white phase noise. With increasing averaging time, the jitter
(and thus, the instability) decreases. For averaging times larger
than 2000 s, other noise processes such as flicker phase noise
become dominant. As observed above, the NTPD implementa-
tion displays the best stability, followed by the NTP and NTS
implementations.

C. Uncorrectable Time Offset When Using NTS

Due to NTS’s applied cryptography, as well as the differ-
ently sized NTS-secured NTP packets, there is an inevitable
asymmetry of the packet transmit delays. This is not correcta-
ble by NTP itself, and consequently causes a systematic error

in the steering of the client’s local clock. This section examines
the causes and extent of the major errors in order to identify
further areas of research and propose countermeasures.

1) Asymmetric Packet Sizes
The complete frame of an NTP network packet that has

been sent can be divided into four parts: The Ethernet header
(14 bytes), the IPv4 header (20 bytes), the UDP header
(8 bytes) and the NTPv4 header (48 bytes). Using unsecured
NTP, both the client request and the server response always
have the same length (90 bytes). The transfer of this data via
Fast-Ethernet (100 Mbit/s) takes 7.2 µs. If the NTP packet con-
tains a TimeRequest message from the NTS client, then the size
of the complete Ethernet frame with 214 bytes will be 124
bytes larger than that of an unprotected NTPv4 packet. This
increases the transmit duration from client to server by an addi-
tional 9.92 µs. However, an NTP header (TimeResponse) from
the server to the client that is 96 bytes larger needs 7.68 µs.
Since NTP assumes symmetric packet transmission times, the
difference of 2.24 µs leads to a permanent time offset at the
client that is half of the packet round-trip time (1.12 µs). The
data transfer over a gigabit Ethernet connection can be a tem-
porary countermeasure to reduce the asymmetry of the packet
delays. However, the asymmetry remains in this case, and the
entire transmission path must have this bandwidth to achieve
the desired effect. The alignment of the packet sizes is a better
alternative in order to completely compensate for this systemat-
ic error. The resulting additional network load increases slight-
ly to 28 bytes10 per message exchange.

2) Cryptography and Performance Differences
Two critical issues related to the absolute synchronization qual-
ity are the use of cryptography and the performance differences
between the client and the server. To measure this offset, the
NTS software was provided with timestamps at the appropriate
places in the implementation and decoupled from the NTP im-
plementation. In this mode, the NTS service uses dummy NTP
packets to prevent possible variations from being caused by the
NTP implementation. Furthermore, in this test, the service
works both as a server and as a client in the same program in-
stance to avoid influences caused by communication between

10 The size difference between TimeRequest and TimeResponse

Fig. 7. Time offset comparison between the different implementations

Fig. 9. Time deviation (TDEV) of the implementations

two devices. This allows the time measurement of internal NTS
processes that are included as delays in the packet round-trip
time. The diagram in Fig. 10 shows measurement data obtained
on a Raspberry Pi. In this measurement, 600 packages were
produced and processed in direct succession. It can be shown
that the weak hardware of the Raspberry Pis has a considerable
influence on the delay. Due to the higher computational ef-
fort11, the server’s delay, at a mean value of 468 µs, is even
higher than the client’s, at 363 µs. The difference in the pro-
cessing times represents the asymmetry, half of which results
in an uncorrectable time offset during the synchronization of
the client. Therefore, the measured difference of 105 µs leads
to a permanent deviation of 52.5 µs. The frequent peaks are
probably due to operating system-specific services that may
affect the measurement but have not yet been determined.
When comparing these results with the values on a desktop PC
(s. Fig. 11), the delay on the client and server is reduced, but
moves in the same proportion.

The results show two general problems. The interaction be-
tween the client and the server, where great differences exist in
their performance, leads to a large asymmetry. Furthermore,
correcting dynamic errors that occur as variations in the pro-
cessing time for securing the time messages is virtually impos-
sible. In addition, the measurements on the Raspberry Pi devic-
es showed other cyclic increases in processing time in addition
to the jitter. The origin of this behavior has not yet been clari-

11 The server also recalculates the cookie needed for generating the MAC

fied and presumably depends on the write access of the record-
ed measurement data to the storage medium or the internal
Linux services.

Note that the measurement of these delays is distorted to
some extent. The time measurements (as part of the implemen-
tation), the logging of information and the storage of measure-
ment data during this critical processing time have a strong
influence on the measurement results. With time recording
activated, comparative measurements showed an increase in
the delay of about 30-50 % (depending on the hardware). As
mentioned in IV.A, the cryptography has shown little impact
on processing time, which is currently 8 % of NTS. The opti-
mization of the NTS service offers the possibility of reducing
the delay, but cannot prevent it completely. A solution to com-
pensate for these inaccuracies is currently unavailable and re-
quires further research. For this reason, the optimization of the
implementation is the best way to minimize the delays.

V. CONCLUSION AND FURTHER WORK

The evaluation of the measurement results confirms that it
is possible to secure time synchronization traffic with NTS,
albeit at the cost of some precision. The relative accuracy that
undergoes higher fluctuations due to NTS (and that is hard to
correct for via NTP) can be significantly compensated for by
optimizing the implementation code. A more problematic issue
when securing time synchronization messages is that of per-
formance differences caused by different hardware. Significant
differences in processing time during time-critical phases of
NTS can lead to a permanent systematic increase in the offset
between the clocks of a client and its server. Additional fluc-
tuations during these phases further impede potential solutions
such as using correction data.

Since the current draft version of NTS, draft-ietf-ntp-using-
nts-for-ntp-11, shows massive design changes from the basis of
our implementation [6], it is critically important that new
measurements be carried out after the update is fully imple-
mented. Currently, the implementation of said current draft
version is still in progress (parallel to the standardization pro-
cess in the IETF). The changes relate to the communication
sequence, the NTP modes supported and increased privacy
protection. Furthermore, the current NTS draft does not use
ASN.1, which contributes a significant part of the non-
correctable asymmetries. Completion of the NTS specification
is currently estimated for mid-2018.

ACKNOWLEDGMENT

We are especially grateful to Simon Häußler, Christian Jüt-
te, Thorben Kompa, Silvan König and Thilo Tuschik, who
provided Ostfalia’s NTPv4 implementation. Special thanks to
Dirk Piester who contributed to the analysis of time stability.

REFERENCES
[1] T. Mizrahi, "Security Requirements of Time Protocols in Packet

Switched Networks," RFC 7384, doi 10.17487/rfc7384, October 2014.

[2] D. L. Mills, "Computer network time synchronization: The Network
Time Protocol," NY: CRC Press, 2006.

[3] D. L. Mills, "Network Time Protocol (NTP)," RFC 958, doi
10.17487/RFC0958, September 1985.

Fig. 10. Additional NTS-related delay on the Raspberry Pi 3

Fig. 11. Additional NTS-related delay on a desktop PC

[4] D. L. Mills, J. Burbank, and W. Kasch, J. Martin, Ed., "Network Time
Protocol Version 4: Protocol and Algorithms Specification," RFC 5905,
doi 10.17487/rfc5905, June 2010.

[5] D. Sibold and K. Teichel, "Network Time Security Specification -
Protecting Network-based Time Synchronization," in 2016 European
Frequency and Time Forum (EFTF), York, UK, 2016.

[6] D. Sibold, S. Roettger, and K. Teichel, "Using the Network Time
Security Specification to Secure the Network Time Protocol," Internet
Draft, draft-ietf-ntp-using-nts-for-ntp-06, September 2016 (Work in
Progress).

[7] K. Teichel, D. Sibold, and S. Roettger, "Network Time Security,"
Internet Draft, draft-ietf-ntp-network-time-security-15, September 2016
(Work in Progress).

[8] D. Sibold, S. Roettger, K. Teichel, and R. Housley, "Protecting Network
Time Security Messages with the Cryptographic Message Syntax
(CMS)," Internet Draft, draft-ietf-ntp-cms-for-nts-message-06, February
2016 (Work in Progress).

[9] M. Langer, "Implementierung des Network-Time-Security-Protokolls
für den Unicast-Betrieb," Master Thesis, Elektrotechnik, Ostfalia
University of Applied Science, 2016.

[10] J. Levine, "A review of time and frequency transfer methods,"
Metrologia, vol. 45, no. 6, pp. S162-S174, Dec 2008.

[11] D. L. Mills, B. Haberman, Ed., "Network Time Protocol Version 4:
Autokey Specification," RFC 5906, doi 10.17487/rfc5906, June 2010.

[12] S. Röttger, "Analysis of the NTP Autokey Procedures," Project Thesis,
Technische Universität Braunschweig, Institute of Theoretical
Information Technology, Braunschweig, 2012.

[13] D. L. Mills, "NTP Security Analysis," [Online] Available (03/06/2018):
https://www.eecis.udel.edu/~mills/security.html, May 2012

[14] D. Reilly, H. Stenn, and D. Sibold, "Network Time Protocol Best
Current Practices," Internet Draft, draft-ietf-ntp-bcp-06, December 2017
(Work in Progress).

[15] D. F. Franke, D. Sibold, and K. Teichel, "Network Time Security for the
Network Time Protocol," Internet Draft, draft-ietf-ntp-using-nts-for-ntp-
11, March 2018 (Work in Progress).

[16] Raspberry Pi Foundation, "Raspbian Stretch Lite," [Online] Available
(03/06/2018): http://downloads.raspberrypi.org/raspbian_lite/images/
raspbian_lite-2017-09-08/, 2017

[17] Network Time Foundation, "Network Time Protocol (NTP) Daemon
v4.2.8p10," [Online] Available (03/06/2018): https://www.eecis.udel
.edu/~ntp/ntp_spool/ntp4/ntp-4.2, 2017

[18] S. Häußler, C. Jütte, T. Kompa, S. König, and T. Tuschik, "Entwicklung
einer NTPv4-Implementation zur Unterstützung von NTS," Team
Project, Ostfalia University of Applied Science, 2016.

[19] T. Mizrahi and D. Mayer, "Network Time Protocol Version 4 (NTPv4)
Extension Fields," RFC 7822, doi 10.17487/RFC7822, March 2016.

[20] J. Weidendorfer, "KCachegrind v0.7.4," [Online] Available (03/06/
2018): https://kcachegrind.github.io/html/Download.html, 2013

[21] L. Walkin, "The ASN.1 Compiler (asn1c v0.9.27)," [Online] Available
(03/06/2018): https://github.com/vlm/asn1c/releases/tag/v0.9.27, 2014

	Vorspann NTS Time Synchronization Performance
	Paper NTS Time Sync Performance - final

