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Abstract—This paper compares the time synchronization 

performance of the standard Network Time Protocol (NTP) 
versus secured NTP using the Network Time Security (NTS) 
protocol and describes the improvements of the current draft-
ietf-ntp-using-nts-for-ntp-17 (NTS-17) compared to draft-ietf-
ntp-using-nts-for-ntp-06 (NTS-06) already investigated in [1]. 
The measurements are based on the implementations of these 
NTS drafts by the Ostfalia University of Applied Science, both 
using an NTS-ready NTP version likewise implemented by the 
Ostfalia, and show the effects of the NTS security mechanisms on 
time synchronization accuracy. 

Keywords—Network Time Security (NTS) protocol; Network 
Time Protocol (NTP); security; authentication; synchronization 
accuracy 

I. INTRODUCTION 
The dissemination of time information, often done through 

packet-based time protocols, such as the widely used Network 
Time Protocol (NTP) [2], is of paramount importance for the 
correct functioning and interoperability of many computer 
applications. 

The accuracy achievable with this protocol in the lower 
milliseconds is sufficient for most applications. It stands to 
reason to protect the time information against any manipulation 
though to date, NTP time data has usually been disseminated 
completely unsecured which enables chances for adversaries to 
maliciously modify those data. NTP itself provides some 
security mechanisms, but an in-depth analysis revealed several 
deficiencies and exposed them either insecure or unsuitable for 
practical use [3]. This led to the development of the Network 
Time Security (NTS) protocol, which is designed to solve the 
known security issues of NTP without significantly reducing 
the accuracy and stability provided by the time synchronization 
process using standard NTP. Now, the specification of NTS is 
in a pre-final state and the RFC is expected in 2019. 

This paper, which is based on previous work [1], examines 
the performance of the protocol in its version 06 from 03/2016 
[4] and compares the results to its version 17 (02/2019) [5]. 
Recently, version 18 was published with minor changes that do 
not affecting the results presented in this elaboration.  
Furthermore, we compare the results with unsecured standard 
NTP and determine the real time deviation between the time 

server and client. Both NTS drafts follow completely different 
protocol designs and were implemented by the Ostfalia 
University of Applied Sciences in cooperation with the 
Physikalisch-Technische Bundesanstalt (PTB). One expects 
distinct improvements of the new version based on the findings 
of the examination in [1]. 

Chapter II introduces the reader to the technical aspects of 
NTP and both NTS versions. Chapter III describes the 
measurement setup, while the results of the measurements are 
presented and discussed in Chapter IV. 

II. PRELIMINARIES 
This section gives an overview of the protocols considered 

in the measurements and describes the technical processes, 
their strengths and weaknesses. The comparison of the NTS 
protocols shows the improvements in NTS-17 against the 
obsolete NTS-06 version. 

A. The Network Time Protocol (NTP) 
Time synchronization of computer systems and other 

appliances typically uses packet-based time dissemination 
protocols. The most widely used protocol for those applications 
is the Network Time Protocol (NTP). David L. Mills presented 
NTP back in 1985 and the RFC 958 of the Internet Engineering 
Taskforce (IETF) describes it thoroughly. The IETF 
standardized the revised version 4 (NTPv4) in 2010 in RFC 
5905 which is the currently relevant version. 

 NTP works in packet-switched networks und uses the 
connectionless UDP protocol to send and receive packets 
containing the time messages. Typically, NTP deploys a 
hierarchical architecture, as shown in Fig. 1. On the top level, 
called stratum 0, the server disseminates the time information 
to clients of the underlying stratum 1. In turn, clients working 
also as servers, communicate with clients further down and so 
on. With increasing stratum numbers, the achievable precision 
typically decreases. Usually NTP servers on stratum 0 receive 
time information from an atomic clock or a suitable Global 
Navigation Satellite System (GNSS) receiver. 

NTP provides several modi operandi. Thus, in symmetric 
mode, servers on the same stratum communicate with each 
other whereas in broadcast mode a server sends out time 



messages continuously with the clients only listening (one-way 
synchronization). The most widely used mode is the so-called 
unicast mode that comprises the modes 3 (client) and 4 
(server). In this two-way synchronization, the client sends time 
request messages to a server on a higher stratum level, which 
in turn answers with the respective response packet, as is 
shown in Fig. 2.  

When sending a request, the client saves and stores a 
timestamp T1 in the time request message, T1 representing the 
point in time when it sends out the packet. On receiving the 
request, the server registers the timestamp T2. It analyses the 
request and builds the response packet wherein it stores T2 and 
the timestamp T3 that is the sending time of the response 
message. The packet then arrives at the client again. The client 
finally registers the timestamp T4, characterizing the receive 
time at the client. Thus, four timestamps are available, T1 and 
T4 taken from the client’s local clock as well as T2 and T3 
gained from the server’s clock. 

The client now calculates the delay δ and the time offset θ 
with those timestamps using the equations (1) and (2). 

 δ = (Τ4 − Τ1) − (Τ3 − Τ2) (1) 

 θ = ((Τ2 − Τ1) − (Τ4 − Τ3)) / 2 (2) 

The delay δ characterizes the time the packet travelled in 
the network, i.e. the so-called round-trip time (RTT). On the 
other hand, the offset θ describes the difference in time 
between the server time and the client’s local clock. With the 
time offset θ NTP adapts the local clock using special 
algorithms. NTP assumes a symmetrical round-trip time, i.e. 
the travelling time from client to server being identical to the 
way back. Any asymmetries in communication lead to 
uncorrectable time offset errors. 

To this day, plain NTP transfers the time data completely 
unsecured. As mentioned above, it stands to reason to protect 
the time information against any manipulation, at least in 

security critical applications. RFC 7384 [6] presents a 
comprehensive list of known threats to time synchronization 
protocols.  

In principle, NTP knows two different security measures to 
protect the time messages. The pre-shared key scheme [2] and 
the Autokey protocol [7]; neither of them meets state-of-the-art 
security demands. The pre-shared key approach does not 
provide any means to exchange the key for an association 
between a client and a server. It therefore requires exchanging 
the key for each association by external means, which reduces 
its scalability and thus its applicability especially in larger 
networks, which is the typical use case for NTP unicast mode. 
The Autokey protocol provides the desired scalability. 
However, due to systemic vulnerabilities it does not provide 
appropriate protection for the NTP packets [3]. External 
security means such as cryptographically based tunnel 
protocols like MACsec or IPsec provide the desired protection 
of the NTP traffic. Nevertheless, these means can affect 
timestamping accuracy that results in a decreased time 
synchronization performance [6]. 

B. The Network Time Security Protocol (NTS) 
NTS is a new approach to provide cryptography-based 

protection to time synchronization protocols, especially to 
NTP. The main goals of NTS are to enable NTP clients to 
cryptographically identify their NTP servers, to ensure 
authenticity and integrity for exchanged time packets, to 
provide good scalability and to ensure that the time 
synchronization performance is impacted as little as possible. 

1) Obsolete Protocol Design (up to NTS-06) 
Up to draft version 06, NTS used its own custom designed 

handshake protocol to authenticate the server and to exchange 
keys and certificates. To this end it defined different message 
types that were embedded in the NTP extension fields which 
were piggy-backed onto NTP packets (see Fig. 3). The access 
messages protect the client against amplification attacks. The 
association messages authenticate the server and negotiate the 
necessary crypto parameters. Finally, the cookie messages 
supply the client with a single cookie. Among others things, it 
contains the key material, which the server provides to the 
client allowing the server to operate in a stateless fashion. 
However, thorough analysis, e.g. in [1], identified 
uncorrectable time offsets because of asymmetric packet sizes 
and performance disadvantages caused by the usage of ASN.1 
and CMS in particular. In addition, problems like IP 
fragmentation and privacy issues were suspected, some of 
which were confirmed by our implementation of this draft 
version.  

 
Fig. 2.  Acquisition of timestamps via NTP unicast communication 
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Fig. 3.  Obsolete NTS protocol sequence up to NTS-06 
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Fig. 1.  NTP time distribution architecture 
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The main point of critique, however, was that a custom 
handshake protocol was being used at all when established 
solutions such as TLS [8] were available. Formal analysis and 
verification of the custom protocol [9] was not deemed 
sufficient to refute this criticism. It also turned out that a key 
aspect of this issue was that the custom protocol necessarily 
had to reverse-engineer and copy security features of 
established protocols. Examples for TLS features that NTS 
attempted to emulate included mitigation of amplification 
attacks on handshake exchanges, as well as secure version 
negotiations and derivation of security guarantees from 
exchanged certificate chains. Overall, the switch towards a 
TLS-based handshake was decided and a complete overhaul of 
the NTS protocol design was performed. 

2) Current Protocol Design (NTS-17) 
The overall structure of the protocol has not changed in the 

overhaul: As seen in Fig. 4, NTS still has two separate phases, 
one for handshake operations (performed once) and another for 
the actual secured time synchronization exchanges (performed 
repeatedly). NTS now also aims to protect the privacy of the 
client. It shall not leak any information which enables an 
adversary to track a client if it crosses networks. Another 
aspect that has changed under the new design is that the key 
material is kept fresh by exchanges in the second phase, 
eliminating any urgent need for re-initialization via repetition 
of the first phase after a set amount of time.  

a) Handshake Protocol 
The latest NTS version employs TLS1.2/1.3 [8] for key 

establishment and exchanges required parameters and 
algorithms via TLS Records (Application Data Protocol). This 
solves the IP fragmentation problem that the old design had 
and allows for optional separation of key server and time 
server. At the end of the handshake protocol, the server 
transmits several cookies to the client. These cookies contain 
the cryptographic state information and enable the server to re-
establish the state of an association upon receipt of a time 
request message. The client is advised to use a cookie only 
once. It will receive a new cookie with each time reply 
message from the server.  

b) Time Messages 
Exchanged time synchronization messages are secured by 

NTP extension fields as in the old design, but the new design 
eliminates the need for CMS or ASN.1, which results in 
improving processing time. For this purpose, four extension 
fields (EF) have been specified. First: NTS Unique-Identifier 
extension, which contains a 32-octet random value that serves 
as nonce and protects against replay attacks. Second: NTS 
Cookie extension. This EF contains the cryptographic state 
information. Note that the stateless server dynamically 
generates cookies upon each time request of the client. This 
behavior fulfills the privacy requirement added to the NTS 

specification. Note that the cookies are opaque to the client. 
Third: NTS Cookie Placeholder extension. The client will send 
this EF if it wishes to receive a new cookie. Its usage 
guarantees that the size of the time request equals the size of 
the time response message. Fourth: NTS Authenticator and 
Encrypted Extensions extension. This EF contains the actual 
security tag. It is computed over the NTP header itself and any 
preceding EF. The new design utilizes AEAD schemes for the 
calculation of the security tag. Usage of the AEAD scheme 
also allows for parts of the information in NTP extension fields 
to only ever be transmitted encrypted. This capability is 
exploited in NTS itself, where the dynamically generated 
cookies are encrypted before transmitted to the client. 
However, the capability to transfer information in secret could 
also be adapted to interact with any other designs using NTP 
extension fields. 

As mentioned above, the time request and the time 
response messages now always have the same size, which 
avoids asymmetries thus enhancing time synchronization 
performance and possibilities for amplification attacks 
employing messages from the time synchronization phase. 
Amplification attacks employing messages from the handshake 
phase are defended against via the relevant features of TLS. 

With all the above being said, the main benefit of the 
overhaul is arguably the use of established security protocols 
for handshake operations, the security of which has already 
been accepted as proven.  

It should be added that where there were only a couple of 
implementations of the old design even attempted, the new 
design has seen significant improvement in this area. The most 
recent interoperability tests at the IFTF meeting 104 in Prague 
on April 2019 involved five different implementations, four of 
which successfully interoperated in both possible pairings of 
client and server (for details, see Section 8 of [5]). This, 
combined with the general maturity of the document, suggests 
that the current draft version of NTS will likely achieve the 
status of a standards track document with only minor changes. 

III. MEASUREMENT SETUP AND CONFIGURATION 
In order to investigate the effects of the design differences 

between the NTS versions described in chapter II.B, a specific 
measurement setup for these protocols was necessary. The 
measurements focused on an unsecured NTP with native NTS 
support, an NTS-06-secured NTP (NTS-06) and an NTS-17-
secured NTP (NTS-17). All these implementations are 
available as open source software on Gitlab [10] [11]. This 
chapter describes the measurement concept and the necessary 
configurations to compare these implementations. The 
procedure is based on the measurement setup described in [1]. 

A. General Measurement Setup 
In general, the comparison of the implementations requires 

fixed conditions for the measurement series to make the results 
comparable with each other. One of these is the simultaneous 
execution of several measurements per measurement series, 
whereby each measurement considers one of the three 
implementations (NTP/NTS-06/NTS-17). The duration of a 
measurement was at least 72 hours in which multiple data sets 
were generated. Each data set started at 00:00 o'clock and 

 
Fig. 4. Current NTS protocol sequence (NTS-17) 
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ended 24 hours later. For each measurement, the client-server 
message exchange took place every 16 seconds, generating 
5,400 measurement points per day. The server-side instances 
had been synchronized with an external time server before the 
start of a measurement, but no synchronization took place 
during an active recording. Thus, possible fluctuations could 
not affect the time of the client. However, the time 
synchronicity of a server is not critical for the measurement 
and primarily serves a better assignment of different raw data 
and data sets. Before the measurement started, the devices used 
were set into operation for several hours in order to control the 
temperature and thus minimize possible distortions of the 
measured values caused by the wander of the crystal and 
subsequent large adjustments of the frequency offset. 

1) Hardware Configuration 
The hardware was based on single board computers 

(Raspberry Pi 3B), each in a closed casing. Since all devices 
used the same hardware models, hardware-related 
measurement deviations were minimal and negligible. A 
measuring unit consisted of a pair of these devices, one acting 
as a client and the other one as a server. Both also worked with 
a defined software configuration, which is described below. 
This device pair always communicated via a direct Fast 
Ethernet connection (see Fig. 5) to prevent network 
fluctuations. Thus, no connection to an external network was 
available, so disturbances or load fluctuations were excluded. 
Since all Raspberry Pi devices operated in the headless mode, 
the measurement was controlled via an SSH access using a 
wireless LAN connection. During active measurements, the 
devices were also stored in a temperature-protected 
environment to prevent a time drift due to short-term 
temperature changes.  

2) Software Configuration 
The Raspberry Pi devices operated with a Linux system 

that had been adapted to the platform (Raspbian Stretch Lite). 
This also included the OpenSSL v1.1.1 crypto library, which 
allowed the use of the new TLS 1.3 protocol for the new 
handshake mechanism in NTS-17. Because of the mirroring of 
the operating system including the software on it, all devices 
used the same software base. Thus, deviations in the operating 
system configurations or system services were excluded. The 
only exception to that affected the NTP/NTS configuration that 
had been used on the respective devices. Depending on the 
measurement, either unsecured NTP, NTS-06 or NTS-17 ran 
on the devices in the role of a client or a server.  

The implementations used had also been compiled as a 
release build under the same conditions to prevent 
measurement deviations due to runtime differences between 
implementations. Furthermore, these did not generate any 
console or log output other than the required measurement 
values, as these could have a negative effect on the results. To 
minimize side effects caused by the operating system, the 
measurement data was also stored in the RAM drive, since 
write access to the read-only memory (SD card) is significantly 
slower.  

The measurements with the unsecured NTP version provide 
reference values to determine the additional performance 
requirements by NTS-06 or NTS-17. The NTS-06 and NTS-17 
measurements used the NTP implementation, which embedded 
the respective NTS version and used it to secure the time 
messages. NTS-06 servers and clients each used local 
certificate chains with 2048-bit RSA keys and 
sha256WithRSAEncryption as the signature algorithm. An 
HMAC_SHA512 algorithm was applied to protect the NTP 
packets by generating a MAC. In NTS-17, however, elliptical 
curves are used in the certificates, which are now transferred 
using TLS. For integrity protection, client and server used the 
AES-based AEAD algorithm AEAD_AES_SIV_CMAC_256. 
However, due to the hardware used, no AES acceleration is 
available on the devices. 

B. Common View Measurement Setup 
In order to determine the absolute time deviation between 

client and server, a measurement setup extension was 
necessary to perform a Common View (CV) measurement. 
Usually the GPS time is used as reference to determine the 
time difference between client and server. However, this could 
not be applied to the measurement setup because the conditions 
for a sufficiently accurate GPS time could not be met. Instead, 
a third measurement system (so-called Reference System) was 
used, which observed the local clock of client and server and 
achieved a sufficiently high measurement accuracy even 
without GPS time. 

The measuring setup consisted of two Raspberry Pi devices 
(client/server), the Reference System (RS) and a PC for 
recording the measured values (see Fig. 6). The RS was 
composed of a microcontroller board (stm32nucleo) equipped 
with an external crystal oscillator to improve the accuracy of 
the measurements. The Reference System was directly 
connected to the Raspberry Pi devices via the GPIO pins and to 

 
Fig. 6.  Hardware setup of the Common View (CV) measurement system 

 
Fig. 5.  Hardware setup of the general measurement system 



the PC via a serial connection. Another link existed between 
the Raspberry Pi devices and the PC over wireless LAN in the 
form of TCP communication.  

The PC started the measurement by execution of a Python 
script that in turn started a measurement every second after a 
short connection check. During a measurement, the RS 
initiated a simultaneous time measurement on client and server, 
which took place independently of the NTP/NTS measurement 
running on it. The Reference System controlled the process by 
setting and resetting the GPIO pins. The Raspberry Pi devices 
reacted to the signals using a specially developed kernel 
module. Furthermore, the kernel module enabled intelligent 
interrupt control and fast and efficient timekeeping. Collected 
time information was then transferred from both Raspberry Pi 
devices to the PC via the TCP connection. The RS also 
transferred data to the PC via the serial interface after the 
measurement had been completed. The data set contained 
information about the individual phases of the time 
measurement of both devices, allowing the exact duration of 
the time measurement to be determined. Using the three data 
sets per measurement, the time difference between client and 
server can be determined with an accuracy of about 0.7 µs. For 
time synchronization via NTP, these values are sufficiently 
accurate.  

IV. MEASUREMENT RESULTS 
This chapter discusses the results and compares the 

respective performance differences of the NTS versions. The 
measurements examine the resource requirements as well as 
the synchronization quality (offset/jitter), and the systematic 
deviation of the client clock from its server’s. 

A. Computational Cost 
The first measurement considers the performance 

requirements of the implementations, since cryptographic 
operations can be problematic especially on weak hardware. 
Therefore, the processor load of NTP, NTS-06 and NTS-17 
respectively was measured, each in the role of client and 
server. The determination of the required processor time is 
based on the execution time of the tested implementation and 
the actual processing time of the processor. The processor 
monitoring tools ps and htop, available on the Linux system, 
provided the necessary information for this. 

The results in Table 1 show that even with NTS protection, 
the performance requirement is low and requires less than 
0.1% of the CPU power. The difference in performance 
between client and server is due to several processing routines 

and has no direct effect on synchronization accuracy. 
Compared to the unsecured NTP version, the obsolete NTS-06 
increases the processor load by about 35 to 40%. The bracketed 
values in the table represent the absolute differences compared 
to the values of the unsecured NTP. In comparison, the current 
NTS-17 version requires only 25% more computing power to 
secure the time data than the unsecured connection and is 
therefore approximately 35% more efficient than NTS-06. The 
difference is primarily due to the elimination of CMS and the 
ASN.1 coding of the data in NTS-17. 

B. Determined Synchronism by NTP 
Standard NTP calculates delay and offset between client 

and server using the four timestamps T1 to T4, as described in 
II.A. From this, the NTP client derives its synchronicity to the 
connected time server.  

1) Delay (Round-Trip Time) 
The delay determined by NTP normally represents the 

packet round-trip time in the network. However, time elapses 
between setting the timestamps in the NTP packet and actually 
sending the message, which distorts this value and makes it 
slightly higher. The securing of the packets by NTS leads to an 
additional distortion, because the required processing time for 
securing the time message is completely included in the delay. 
This results in higher delay values, which in turn can affect the 
algorithms used by NTP (e.g. clock selection).  

As the results in Fig 7 show, the unsecured NTP reaches a 
delay value of about 1.0 ms. Further optimization of our NTP 
implementation could probably reduce that to a magnitude of 
approximately 0.5 ms, which is the typical delay of NTPD [12] 
already presented in [1]. In comparison, the delay of NTS-06 is 
more than one millisecond higher. The time responsible for 
securing the message consists primarily of cryptographic 
operations and the ASN.1 coding of the data. In comparison, 
the delay in NTS-17 with an additional 0.5 ms is only one half 
of that of NTS-06. This is primarily due to the elimination of 
ASN.1 encoding and the resulting faster embedding of integrity 
information in the NTP packet. Hardware that offers AES 
acceleration could further reduce this delay, but this would not 
be possible for the old NTS-06 version, because of its hash-
based protection.  

2) Time Offset 
The measurement results in Fig. 8 show the determined 

offset of the received and unfiltered NTP packets. As expected, 
the client synchronizes correctly with all measurements. With a 
standard deviation of 10.7 µs, NTS-17 is comparable to the 

TABLE I.  COMPARISION OF THE COMPUTATIONAL COST 

Implementation Role CPU Time / Day 
[s] 

Avg. CPU Usage 
[%] 

NTP Server      29.2 0.03 
NTP Client      45.1 0.05 
NTS-06 Server      40.8 (+11.6)* 0.05 
NTS-06 Client      61.0 (+15.9)* 0.07 
NTS-17 Server      36.4 (+7.2)* 0.04 
NTS-17 Client      55.6 (+10.5)* 0.06 

*Performance difference to unsecured NTP 

 
Fig. 7.  Delay comparison between unsecured NTP, NTS-06 and NTS-17 



unsecured NTP connection with 11.1 µs. However, NTS-06 
shows a standard deviation of 25.8 µs, which is more than 
twice the jitter of NTS-17. The actual synchronization accuracy 
is slightly better, since NTP uses the packet with the lowest 
delay from the last eight measurements to adjust the time, since 
it usually has the lowest offset.  

3) Delay/Offset Correlation 
The combination of the measured values presented in 

IV.B.1 and IV.B.2 results in a delay/offset correlation diagram. 
This visualizes the dispersion range of the time information 
and the synchronization accuracy determined by the NTP 
client. Ideal measurement values would result in a point or a 
small circular area. The delay fluctuations and the resulting 
jitter in the offset, results in a V-shaped spread open to the 
right, as can be seen in NTS-06 in Fig. 9. The opening angle of 
the spread reflects the offset jitter. The diagram shows that a 
smaller delay is always accompanied by a smaller offset. In 
addition, it can be seen that the unsecured NTP has a strong 
bias in the positive direction. This is caused by asymmetries in 
the RTT, which are provoked here by the NTP implementation 
and can potentially be corrected by optimizations. The bias of 
NTP is also reflected in the NTS implementations. NTS-17 is 
almost identical to NTP and only shifted to the right by the 
delay caused by the crypto time. The shift of NTS-06 is more 
pronounced and shows a significantly higher offset jitter.  

C. Critical Processing Time 
In this step, the critical processing time (or critical delay) 

between timestamping of the NTP message and transmitting it 
was measured. The focus lies on the part caused by NTS when 
securing a message. In this measurement, NTP was decoupled 
from NTS and replaced by an NTP dummy. The dummy 
resolves the implementation-specific dependencies and 
prevents measurement value distortions that could be caused 
by a normal NTP implementation.  

Using the NTP dummy one measures the sole NTS 
processing time, approximately. The results in Fig. 10 show 
clear differences between NTS-06 and NTS-17, whereby the 
critical delay caused by NTS-17 is much smaller. In NTP, the 
delay difference of the processing times between client and 
server causes an asymmetry in the calculated RTT by NTP. 
The delay differences between client and server are partly due 
to the measurement itself, since various debug functions were 
active during this measurement. The actual values are therefore 
slightly lower than the presented results.  

The critical processing time depends on the crypto 
algorithms used, the implementation and the available 
computing power. While with the Raspberry Pi the NTS-17 
server causes a delay of approximately 100 µs, with a typical 
desktop system this drops below 10 µs (depending on 
computer performance). Thus, a high-performance server and a 
low-performance client could cause a larger difference and 
therefore a larger asymmetry. This inevitably leads to a 
systematic offset error between client and server (see IV.D).  

D. Systematic Time Offset 
Since the NTP protocol assumes symmetrical packet 

runtimes due to its design, time shifts caused by asymmetrical 
runtimes can only be partially corrected. However, due to the 
homogeneous measurement setup in these test series with 
identical hardware and software, almost symmetrical packet 
runtimes can be assumed.  

The measurement of the client's deviation from the server 
was realized using the Common View method described in 
chapter III.B. In addition to the NTP/NTS implementations 
mentioned above, measurements with the unsecured reference 
implementation NTPD were also performed in order to 
compare the accuracy of the own NTP implementation. The 
results showed a systematic offset of 20 ± 10 µs for NTPD, 
which remained constant during the measurement period. The 
own unsecured NTP implementation caused a higher 
systematic offset of 40 ± 10 µs due to the lack of optimization 
of the NTP software.  

As mentioned above, the process of securing the NTP 
messages by NTS generates an asymmetry due to performance 
differences of the hardware or different runtimes in the 
implementation. Fig. 11 shows the sole systematic offset of the 
two NTS versions, which are generated in addition to the NTP 
deviations. The value of NTP was averaged out to obtain the 
pure NTS offset. The current NTS-17 version thus generates an 
additional offset of 20 µs, while the old NTS-6 version 
produced a 60 µs offset.  

 
Fig. 8.  Comparison of the determined time offset 
 

 
Fig. 9.  Delay/Offset correlation diagram of NTP, NTS-06 and NTS-17 

 
Fig. 10.  Introduced delay for securing NTP messages by NTS 



V. CONCLUSION AND FURTHER WORK 
We have shown that the latest NTS draft provides much 

better results in performance and accuracy. Moreover, the 
asymmetry caused by the critical delay is reduced and the 
systematic error is negligible in typical NTP applications. 
Additionally, because the current NTS version has fixed all 
known problems of NTS-06 like IP fragmentation or privacy 
issues etc., the Network Time Security protocol seems ready 
for practical application. Therefore, it stands to reason that 
NTS should be applied in every NTP service. 

 The focus of our further work lies on the reduction or even 
the compensation of the critical processing time of NTS. As 
even perfect cryptography cannot avoid delay attacks, 
mitigation of their effects as well as the securing of other NTP 
modes (such as broadcast) are also being pursued.  
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Fig. 11.  Systematic time offset caused by NTS 
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