

The following article is the final version submitted to IEEE after peer review; hosted by Ostfalia

University of Applied Sciences. It is provided for personal use only.

Performance Comparison Between

Network Time Security Protocol Drafts

Improvements and Accuracy of the Latest NTS Draft

Martin Langer, Kristof Teichel, Dieter Sibold and Rainer Bermbach

© 2019 IEEE. This is the author’s version of an article that has been published by IEEE.

Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

Full Citation of the original article published by IEEE:

M. Langer, K. Teichel, D. Sibold and R. Bermbach, " Performance Comparison Between

Network Time Security Protocol Drafts - Improvements and Accuracy of the Latest NTS Draft,"

2019 Joint Conference of the IEEE International Frequency Control Symposium and European

Frequency and Time Forum (EFTF/IFCS), Orlando, FL, USA, 2019, pp. 1-7.

doi: 10.1109/FCS.2019.8856019

Available at:

https://doi.org/10.1109/FCS.2019.8856019

Performance Comparison Between
Network Time Security Protocol Drafts

Improvements and Accuracy of the Latest NTS Draft

Martin Langer, Rainer Bermbach
Ostfalia University of Applied Sciences

Wolfenbüttel, Germany
mart.langer@ostfalia.de, r.bermbach@ostfalia.de

Kristof Teichel, Dieter Sibold
Physikalisch-Technische Bundesanstalt

Braunschweig, Germany
kristof.teichel@ptb.de, dieter.sibold@ptb.de

Abstract—This paper compares the time synchronization

performance of the standard Network Time Protocol (NTP)
versus secured NTP using the Network Time Security (NTS)
protocol and describes the improvements of the current draft-
ietf-ntp-using-nts-for-ntp-17 (NTS-17) compared to draft-ietf-
ntp-using-nts-for-ntp-06 (NTS-06) already investigated in [1].
The measurements are based on the implementations of these
NTS drafts by the Ostfalia University of Applied Science, both
using an NTS-ready NTP version likewise implemented by the
Ostfalia, and show the effects of the NTS security mechanisms on
time synchronization accuracy.

Keywords—Network Time Security (NTS) protocol; Network
Time Protocol (NTP); security; authentication; synchronization
accuracy

I. INTRODUCTION
The dissemination of time information, often done through

packet-based time protocols, such as the widely used Network
Time Protocol (NTP) [2], is of paramount importance for the
correct functioning and interoperability of many computer
applications.

The accuracy achievable with this protocol in the lower
milliseconds is sufficient for most applications. It stands to
reason to protect the time information against any manipulation
though to date, NTP time data has usually been disseminated
completely unsecured which enables chances for adversaries to
maliciously modify those data. NTP itself provides some
security mechanisms, but an in-depth analysis revealed several
deficiencies and exposed them either insecure or unsuitable for
practical use [3]. This led to the development of the Network
Time Security (NTS) protocol, which is designed to solve the
known security issues of NTP without significantly reducing
the accuracy and stability provided by the time synchronization
process using standard NTP. Now, the specification of NTS is
in a pre-final state and the RFC is expected in 2019.

This paper, which is based on previous work [1], examines
the performance of the protocol in its version 06 from 03/2016
[4] and compares the results to its version 17 (02/2019) [5].
Recently, version 18 was published with minor changes that do
not affecting the results presented in this elaboration.
Furthermore, we compare the results with unsecured standard
NTP and determine the real time deviation between the time

server and client. Both NTS drafts follow completely different
protocol designs and were implemented by the Ostfalia
University of Applied Sciences in cooperation with the
Physikalisch-Technische Bundesanstalt (PTB). One expects
distinct improvements of the new version based on the findings
of the examination in [1].

Chapter II introduces the reader to the technical aspects of
NTP and both NTS versions. Chapter III describes the
measurement setup, while the results of the measurements are
presented and discussed in Chapter IV.

II. PRELIMINARIES
This section gives an overview of the protocols considered

in the measurements and describes the technical processes,
their strengths and weaknesses. The comparison of the NTS
protocols shows the improvements in NTS-17 against the
obsolete NTS-06 version.

A. The Network Time Protocol (NTP)
Time synchronization of computer systems and other

appliances typically uses packet-based time dissemination
protocols. The most widely used protocol for those applications
is the Network Time Protocol (NTP). David L. Mills presented
NTP back in 1985 and the RFC 958 of the Internet Engineering
Taskforce (IETF) describes it thoroughly. The IETF
standardized the revised version 4 (NTPv4) in 2010 in RFC
5905 which is the currently relevant version.

 NTP works in packet-switched networks und uses the
connectionless UDP protocol to send and receive packets
containing the time messages. Typically, NTP deploys a
hierarchical architecture, as shown in Fig. 1. On the top level,
called stratum 0, the server disseminates the time information
to clients of the underlying stratum 1. In turn, clients working
also as servers, communicate with clients further down and so
on. With increasing stratum numbers, the achievable precision
typically decreases. Usually NTP servers on stratum 0 receive
time information from an atomic clock or a suitable Global
Navigation Satellite System (GNSS) receiver.

NTP provides several modi operandi. Thus, in symmetric
mode, servers on the same stratum communicate with each
other whereas in broadcast mode a server sends out time

messages continuously with the clients only listening (one-way
synchronization). The most widely used mode is the so-called
unicast mode that comprises the modes 3 (client) and 4
(server). In this two-way synchronization, the client sends time
request messages to a server on a higher stratum level, which
in turn answers with the respective response packet, as is
shown in Fig. 2.

When sending a request, the client saves and stores a
timestamp T1 in the time request message, T1 representing the
point in time when it sends out the packet. On receiving the
request, the server registers the timestamp T2. It analyses the
request and builds the response packet wherein it stores T2 and
the timestamp T3 that is the sending time of the response
message. The packet then arrives at the client again. The client
finally registers the timestamp T4, characterizing the receive
time at the client. Thus, four timestamps are available, T1 and
T4 taken from the client’s local clock as well as T2 and T3
gained from the server’s clock.

The client now calculates the delay δ and the time offset θ
with those timestamps using the equations (1) and (2).

 δ = (Τ4 − Τ1) − (Τ3 − Τ2) (1)

 θ = ((Τ2 − Τ1) − (Τ4 − Τ3)) / 2 (2)

The delay δ characterizes the time the packet travelled in
the network, i.e. the so-called round-trip time (RTT). On the
other hand, the offset θ describes the difference in time
between the server time and the client’s local clock. With the
time offset θ NTP adapts the local clock using special
algorithms. NTP assumes a symmetrical round-trip time, i.e.
the travelling time from client to server being identical to the
way back. Any asymmetries in communication lead to
uncorrectable time offset errors.

To this day, plain NTP transfers the time data completely
unsecured. As mentioned above, it stands to reason to protect
the time information against any manipulation, at least in

security critical applications. RFC 7384 [6] presents a
comprehensive list of known threats to time synchronization
protocols.

In principle, NTP knows two different security measures to
protect the time messages. The pre-shared key scheme [2] and
the Autokey protocol [7]; neither of them meets state-of-the-art
security demands. The pre-shared key approach does not
provide any means to exchange the key for an association
between a client and a server. It therefore requires exchanging
the key for each association by external means, which reduces
its scalability and thus its applicability especially in larger
networks, which is the typical use case for NTP unicast mode.
The Autokey protocol provides the desired scalability.
However, due to systemic vulnerabilities it does not provide
appropriate protection for the NTP packets [3]. External
security means such as cryptographically based tunnel
protocols like MACsec or IPsec provide the desired protection
of the NTP traffic. Nevertheless, these means can affect
timestamping accuracy that results in a decreased time
synchronization performance [6].

B. The Network Time Security Protocol (NTS)
NTS is a new approach to provide cryptography-based

protection to time synchronization protocols, especially to
NTP. The main goals of NTS are to enable NTP clients to
cryptographically identify their NTP servers, to ensure
authenticity and integrity for exchanged time packets, to
provide good scalability and to ensure that the time
synchronization performance is impacted as little as possible.

1) Obsolete Protocol Design (up to NTS-06)
Up to draft version 06, NTS used its own custom designed

handshake protocol to authenticate the server and to exchange
keys and certificates. To this end it defined different message
types that were embedded in the NTP extension fields which
were piggy-backed onto NTP packets (see Fig. 3). The access
messages protect the client against amplification attacks. The
association messages authenticate the server and negotiate the
necessary crypto parameters. Finally, the cookie messages
supply the client with a single cookie. Among others things, it
contains the key material, which the server provides to the
client allowing the server to operate in a stateless fashion.
However, thorough analysis, e.g. in [1], identified
uncorrectable time offsets because of asymmetric packet sizes
and performance disadvantages caused by the usage of ASN.1
and CMS in particular. In addition, problems like IP
fragmentation and privacy issues were suspected, some of
which were confirmed by our implementation of this draft
version.

Fig. 2. Acquisition of timestamps via NTP unicast communication

T1

T4

T2

T3

Fig. 3. Obsolete NTS protocol sequence up to NTS-06

Access Messages

Association Messages

Cookie Messages

Time Messages

Handshake
Protocol

NTS-secured
NTP

Fig. 1. NTP time distribution architecture

stratum 0:
atomic clock

stratum 1:
 time server

stratum 2:
server and clients

stratum 3:
clients

The main point of critique, however, was that a custom
handshake protocol was being used at all when established
solutions such as TLS [8] were available. Formal analysis and
verification of the custom protocol [9] was not deemed
sufficient to refute this criticism. It also turned out that a key
aspect of this issue was that the custom protocol necessarily
had to reverse-engineer and copy security features of
established protocols. Examples for TLS features that NTS
attempted to emulate included mitigation of amplification
attacks on handshake exchanges, as well as secure version
negotiations and derivation of security guarantees from
exchanged certificate chains. Overall, the switch towards a
TLS-based handshake was decided and a complete overhaul of
the NTS protocol design was performed.

2) Current Protocol Design (NTS-17)
The overall structure of the protocol has not changed in the

overhaul: As seen in Fig. 4, NTS still has two separate phases,
one for handshake operations (performed once) and another for
the actual secured time synchronization exchanges (performed
repeatedly). NTS now also aims to protect the privacy of the
client. It shall not leak any information which enables an
adversary to track a client if it crosses networks. Another
aspect that has changed under the new design is that the key
material is kept fresh by exchanges in the second phase,
eliminating any urgent need for re-initialization via repetition
of the first phase after a set amount of time.

a) Handshake Protocol
The latest NTS version employs TLS1.2/1.3 [8] for key

establishment and exchanges required parameters and
algorithms via TLS Records (Application Data Protocol). This
solves the IP fragmentation problem that the old design had
and allows for optional separation of key server and time
server. At the end of the handshake protocol, the server
transmits several cookies to the client. These cookies contain
the cryptographic state information and enable the server to re-
establish the state of an association upon receipt of a time
request message. The client is advised to use a cookie only
once. It will receive a new cookie with each time reply
message from the server.

b) Time Messages
Exchanged time synchronization messages are secured by

NTP extension fields as in the old design, but the new design
eliminates the need for CMS or ASN.1, which results in
improving processing time. For this purpose, four extension
fields (EF) have been specified. First: NTS Unique-Identifier
extension, which contains a 32-octet random value that serves
as nonce and protects against replay attacks. Second: NTS
Cookie extension. This EF contains the cryptographic state
information. Note that the stateless server dynamically
generates cookies upon each time request of the client. This
behavior fulfills the privacy requirement added to the NTS

specification. Note that the cookies are opaque to the client.
Third: NTS Cookie Placeholder extension. The client will send
this EF if it wishes to receive a new cookie. Its usage
guarantees that the size of the time request equals the size of
the time response message. Fourth: NTS Authenticator and
Encrypted Extensions extension. This EF contains the actual
security tag. It is computed over the NTP header itself and any
preceding EF. The new design utilizes AEAD schemes for the
calculation of the security tag. Usage of the AEAD scheme
also allows for parts of the information in NTP extension fields
to only ever be transmitted encrypted. This capability is
exploited in NTS itself, where the dynamically generated
cookies are encrypted before transmitted to the client.
However, the capability to transfer information in secret could
also be adapted to interact with any other designs using NTP
extension fields.

As mentioned above, the time request and the time
response messages now always have the same size, which
avoids asymmetries thus enhancing time synchronization
performance and possibilities for amplification attacks
employing messages from the time synchronization phase.
Amplification attacks employing messages from the handshake
phase are defended against via the relevant features of TLS.

With all the above being said, the main benefit of the
overhaul is arguably the use of established security protocols
for handshake operations, the security of which has already
been accepted as proven.

It should be added that where there were only a couple of
implementations of the old design even attempted, the new
design has seen significant improvement in this area. The most
recent interoperability tests at the IFTF meeting 104 in Prague
on April 2019 involved five different implementations, four of
which successfully interoperated in both possible pairings of
client and server (for details, see Section 8 of [5]). This,
combined with the general maturity of the document, suggests
that the current draft version of NTS will likely achieve the
status of a standards track document with only minor changes.

III. MEASUREMENT SETUP AND CONFIGURATION
In order to investigate the effects of the design differences

between the NTS versions described in chapter II.B, a specific
measurement setup for these protocols was necessary. The
measurements focused on an unsecured NTP with native NTS
support, an NTS-06-secured NTP (NTS-06) and an NTS-17-
secured NTP (NTS-17). All these implementations are
available as open source software on Gitlab [10] [11]. This
chapter describes the measurement concept and the necessary
configurations to compare these implementations. The
procedure is based on the measurement setup described in [1].

A. General Measurement Setup
In general, the comparison of the implementations requires

fixed conditions for the measurement series to make the results
comparable with each other. One of these is the simultaneous
execution of several measurements per measurement series,
whereby each measurement considers one of the three
implementations (NTP/NTS-06/NTS-17). The duration of a
measurement was at least 72 hours in which multiple data sets
were generated. Each data set started at 00:00 o'clock and

Fig. 4. Current NTS protocol sequence (NTS-17)

NTS Key Establishment

Time Messages

Handshake
Protocol

NTS-secured
NTP

ended 24 hours later. For each measurement, the client-server
message exchange took place every 16 seconds, generating
5,400 measurement points per day. The server-side instances
had been synchronized with an external time server before the
start of a measurement, but no synchronization took place
during an active recording. Thus, possible fluctuations could
not affect the time of the client. However, the time
synchronicity of a server is not critical for the measurement
and primarily serves a better assignment of different raw data
and data sets. Before the measurement started, the devices used
were set into operation for several hours in order to control the
temperature and thus minimize possible distortions of the
measured values caused by the wander of the crystal and
subsequent large adjustments of the frequency offset.

1) Hardware Configuration
The hardware was based on single board computers

(Raspberry Pi 3B), each in a closed casing. Since all devices
used the same hardware models, hardware-related
measurement deviations were minimal and negligible. A
measuring unit consisted of a pair of these devices, one acting
as a client and the other one as a server. Both also worked with
a defined software configuration, which is described below.
This device pair always communicated via a direct Fast
Ethernet connection (see Fig. 5) to prevent network
fluctuations. Thus, no connection to an external network was
available, so disturbances or load fluctuations were excluded.
Since all Raspberry Pi devices operated in the headless mode,
the measurement was controlled via an SSH access using a
wireless LAN connection. During active measurements, the
devices were also stored in a temperature-protected
environment to prevent a time drift due to short-term
temperature changes.

2) Software Configuration
The Raspberry Pi devices operated with a Linux system

that had been adapted to the platform (Raspbian Stretch Lite).
This also included the OpenSSL v1.1.1 crypto library, which
allowed the use of the new TLS 1.3 protocol for the new
handshake mechanism in NTS-17. Because of the mirroring of
the operating system including the software on it, all devices
used the same software base. Thus, deviations in the operating
system configurations or system services were excluded. The
only exception to that affected the NTP/NTS configuration that
had been used on the respective devices. Depending on the
measurement, either unsecured NTP, NTS-06 or NTS-17 ran
on the devices in the role of a client or a server.

The implementations used had also been compiled as a
release build under the same conditions to prevent
measurement deviations due to runtime differences between
implementations. Furthermore, these did not generate any
console or log output other than the required measurement
values, as these could have a negative effect on the results. To
minimize side effects caused by the operating system, the
measurement data was also stored in the RAM drive, since
write access to the read-only memory (SD card) is significantly
slower.

The measurements with the unsecured NTP version provide
reference values to determine the additional performance
requirements by NTS-06 or NTS-17. The NTS-06 and NTS-17
measurements used the NTP implementation, which embedded
the respective NTS version and used it to secure the time
messages. NTS-06 servers and clients each used local
certificate chains with 2048-bit RSA keys and
sha256WithRSAEncryption as the signature algorithm. An
HMAC_SHA512 algorithm was applied to protect the NTP
packets by generating a MAC. In NTS-17, however, elliptical
curves are used in the certificates, which are now transferred
using TLS. For integrity protection, client and server used the
AES-based AEAD algorithm AEAD_AES_SIV_CMAC_256.
However, due to the hardware used, no AES acceleration is
available on the devices.

B. Common View Measurement Setup
In order to determine the absolute time deviation between

client and server, a measurement setup extension was
necessary to perform a Common View (CV) measurement.
Usually the GPS time is used as reference to determine the
time difference between client and server. However, this could
not be applied to the measurement setup because the conditions
for a sufficiently accurate GPS time could not be met. Instead,
a third measurement system (so-called Reference System) was
used, which observed the local clock of client and server and
achieved a sufficiently high measurement accuracy even
without GPS time.

The measuring setup consisted of two Raspberry Pi devices
(client/server), the Reference System (RS) and a PC for
recording the measured values (see Fig. 6). The RS was
composed of a microcontroller board (stm32nucleo) equipped
with an external crystal oscillator to improve the accuracy of
the measurements. The Reference System was directly
connected to the Raspberry Pi devices via the GPIO pins and to

Fig. 6. Hardware setup of the Common View (CV) measurement system

Fig. 5. Hardware setup of the general measurement system

the PC via a serial connection. Another link existed between
the Raspberry Pi devices and the PC over wireless LAN in the
form of TCP communication.

The PC started the measurement by execution of a Python
script that in turn started a measurement every second after a
short connection check. During a measurement, the RS
initiated a simultaneous time measurement on client and server,
which took place independently of the NTP/NTS measurement
running on it. The Reference System controlled the process by
setting and resetting the GPIO pins. The Raspberry Pi devices
reacted to the signals using a specially developed kernel
module. Furthermore, the kernel module enabled intelligent
interrupt control and fast and efficient timekeeping. Collected
time information was then transferred from both Raspberry Pi
devices to the PC via the TCP connection. The RS also
transferred data to the PC via the serial interface after the
measurement had been completed. The data set contained
information about the individual phases of the time
measurement of both devices, allowing the exact duration of
the time measurement to be determined. Using the three data
sets per measurement, the time difference between client and
server can be determined with an accuracy of about 0.7 µs. For
time synchronization via NTP, these values are sufficiently
accurate.

IV. MEASUREMENT RESULTS
This chapter discusses the results and compares the

respective performance differences of the NTS versions. The
measurements examine the resource requirements as well as
the synchronization quality (offset/jitter), and the systematic
deviation of the client clock from its server’s.

A. Computational Cost
The first measurement considers the performance

requirements of the implementations, since cryptographic
operations can be problematic especially on weak hardware.
Therefore, the processor load of NTP, NTS-06 and NTS-17
respectively was measured, each in the role of client and
server. The determination of the required processor time is
based on the execution time of the tested implementation and
the actual processing time of the processor. The processor
monitoring tools ps and htop, available on the Linux system,
provided the necessary information for this.

The results in Table 1 show that even with NTS protection,
the performance requirement is low and requires less than
0.1% of the CPU power. The difference in performance
between client and server is due to several processing routines

and has no direct effect on synchronization accuracy.
Compared to the unsecured NTP version, the obsolete NTS-06
increases the processor load by about 35 to 40%. The bracketed
values in the table represent the absolute differences compared
to the values of the unsecured NTP. In comparison, the current
NTS-17 version requires only 25% more computing power to
secure the time data than the unsecured connection and is
therefore approximately 35% more efficient than NTS-06. The
difference is primarily due to the elimination of CMS and the
ASN.1 coding of the data in NTS-17.

B. Determined Synchronism by NTP
Standard NTP calculates delay and offset between client

and server using the four timestamps T1 to T4, as described in
II.A. From this, the NTP client derives its synchronicity to the
connected time server.

1) Delay (Round-Trip Time)
The delay determined by NTP normally represents the

packet round-trip time in the network. However, time elapses
between setting the timestamps in the NTP packet and actually
sending the message, which distorts this value and makes it
slightly higher. The securing of the packets by NTS leads to an
additional distortion, because the required processing time for
securing the time message is completely included in the delay.
This results in higher delay values, which in turn can affect the
algorithms used by NTP (e.g. clock selection).

As the results in Fig 7 show, the unsecured NTP reaches a
delay value of about 1.0 ms. Further optimization of our NTP
implementation could probably reduce that to a magnitude of
approximately 0.5 ms, which is the typical delay of NTPD [12]
already presented in [1]. In comparison, the delay of NTS-06 is
more than one millisecond higher. The time responsible for
securing the message consists primarily of cryptographic
operations and the ASN.1 coding of the data. In comparison,
the delay in NTS-17 with an additional 0.5 ms is only one half
of that of NTS-06. This is primarily due to the elimination of
ASN.1 encoding and the resulting faster embedding of integrity
information in the NTP packet. Hardware that offers AES
acceleration could further reduce this delay, but this would not
be possible for the old NTS-06 version, because of its hash-
based protection.

2) Time Offset
The measurement results in Fig. 8 show the determined

offset of the received and unfiltered NTP packets. As expected,
the client synchronizes correctly with all measurements. With a
standard deviation of 10.7 µs, NTS-17 is comparable to the

TABLE I. COMPARISION OF THE COMPUTATIONAL COST

Implementation Role CPU Time / Day
[s]

Avg. CPU Usage
[%]

NTP Server 29.2 0.03
NTP Client 45.1 0.05
NTS-06 Server 40.8 (+11.6)* 0.05
NTS-06 Client 61.0 (+15.9)* 0.07
NTS-17 Server 36.4 (+7.2)* 0.04
NTS-17 Client 55.6 (+10.5)* 0.06

*Performance difference to unsecured NTP

Fig. 7. Delay comparison between unsecured NTP, NTS-06 and NTS-17

unsecured NTP connection with 11.1 µs. However, NTS-06
shows a standard deviation of 25.8 µs, which is more than
twice the jitter of NTS-17. The actual synchronization accuracy
is slightly better, since NTP uses the packet with the lowest
delay from the last eight measurements to adjust the time, since
it usually has the lowest offset.

3) Delay/Offset Correlation
The combination of the measured values presented in

IV.B.1 and IV.B.2 results in a delay/offset correlation diagram.
This visualizes the dispersion range of the time information
and the synchronization accuracy determined by the NTP
client. Ideal measurement values would result in a point or a
small circular area. The delay fluctuations and the resulting
jitter in the offset, results in a V-shaped spread open to the
right, as can be seen in NTS-06 in Fig. 9. The opening angle of
the spread reflects the offset jitter. The diagram shows that a
smaller delay is always accompanied by a smaller offset. In
addition, it can be seen that the unsecured NTP has a strong
bias in the positive direction. This is caused by asymmetries in
the RTT, which are provoked here by the NTP implementation
and can potentially be corrected by optimizations. The bias of
NTP is also reflected in the NTS implementations. NTS-17 is
almost identical to NTP and only shifted to the right by the
delay caused by the crypto time. The shift of NTS-06 is more
pronounced and shows a significantly higher offset jitter.

C. Critical Processing Time
In this step, the critical processing time (or critical delay)

between timestamping of the NTP message and transmitting it
was measured. The focus lies on the part caused by NTS when
securing a message. In this measurement, NTP was decoupled
from NTS and replaced by an NTP dummy. The dummy
resolves the implementation-specific dependencies and
prevents measurement value distortions that could be caused
by a normal NTP implementation.

Using the NTP dummy one measures the sole NTS
processing time, approximately. The results in Fig. 10 show
clear differences between NTS-06 and NTS-17, whereby the
critical delay caused by NTS-17 is much smaller. In NTP, the
delay difference of the processing times between client and
server causes an asymmetry in the calculated RTT by NTP.
The delay differences between client and server are partly due
to the measurement itself, since various debug functions were
active during this measurement. The actual values are therefore
slightly lower than the presented results.

The critical processing time depends on the crypto
algorithms used, the implementation and the available
computing power. While with the Raspberry Pi the NTS-17
server causes a delay of approximately 100 µs, with a typical
desktop system this drops below 10 µs (depending on
computer performance). Thus, a high-performance server and a
low-performance client could cause a larger difference and
therefore a larger asymmetry. This inevitably leads to a
systematic offset error between client and server (see IV.D).

D. Systematic Time Offset
Since the NTP protocol assumes symmetrical packet

runtimes due to its design, time shifts caused by asymmetrical
runtimes can only be partially corrected. However, due to the
homogeneous measurement setup in these test series with
identical hardware and software, almost symmetrical packet
runtimes can be assumed.

The measurement of the client's deviation from the server
was realized using the Common View method described in
chapter III.B. In addition to the NTP/NTS implementations
mentioned above, measurements with the unsecured reference
implementation NTPD were also performed in order to
compare the accuracy of the own NTP implementation. The
results showed a systematic offset of 20 ± 10 µs for NTPD,
which remained constant during the measurement period. The
own unsecured NTP implementation caused a higher
systematic offset of 40 ± 10 µs due to the lack of optimization
of the NTP software.

As mentioned above, the process of securing the NTP
messages by NTS generates an asymmetry due to performance
differences of the hardware or different runtimes in the
implementation. Fig. 11 shows the sole systematic offset of the
two NTS versions, which are generated in addition to the NTP
deviations. The value of NTP was averaged out to obtain the
pure NTS offset. The current NTS-17 version thus generates an
additional offset of 20 µs, while the old NTS-6 version
produced a 60 µs offset.

Fig. 8. Comparison of the determined time offset

Fig. 9. Delay/Offset correlation diagram of NTP, NTS-06 and NTS-17

Fig. 10. Introduced delay for securing NTP messages by NTS

V. CONCLUSION AND FURTHER WORK
We have shown that the latest NTS draft provides much

better results in performance and accuracy. Moreover, the
asymmetry caused by the critical delay is reduced and the
systematic error is negligible in typical NTP applications.
Additionally, because the current NTS version has fixed all
known problems of NTS-06 like IP fragmentation or privacy
issues etc., the Network Time Security protocol seems ready
for practical application. Therefore, it stands to reason that
NTS should be applied in every NTP service.

 The focus of our further work lies on the reduction or even
the compensation of the critical processing time of NTS. As
even perfect cryptography cannot avoid delay attacks,
mitigation of their effects as well as the securing of other NTP
modes (such as broadcast) are also being pursued.

REFERENCES
[1] M. Langer, K. Teichel, D. Sibold and R. Bermbach, "Time

Synchronization Performance Using the Network Time Security
Protocol," in 2018 European Frequency and Time Forum (EFTF), doi
10.1109/EFTF.2018.8409017, Turin, Italy, 2018.

[2] D. L. Mills, et al., "Network Time Protocol Version 4: Protocol and
Algorithms Specification," RFC 5905, doi 10.17487/rfc5905, June 2010.

[3] S. Röttger, "Analysis of the NTP Autokey Procedures," Project Thesis,
Technische Universität Braunschweig, Institute of Theoretical Computer
Science, Braunschweig, 2012.

[4] D. Sibold, S. Roettger, and K. Teichel, "Using the Network Time
Security Specification to Secure the Network Time Protocol," Internet
Draft, draft-ietf-ntp-using-nts-for-ntp-06, Sep 2016.

[5] D. Franke, D. Sibold, K. Teichel, M. Dansarie, R. Sundblad, "Network
Time Security for the Network Time Protocol," Internet Draft, draft-ietf-
ntp-using-nts-for-ntp-17, Feb. 2019.

[6] T. Mizrahi, "Security Requirements of Time Protocols in Packet
Switched Networks," Internet Requests for Comments, IETF Secretariat,
RFC 7384, Okt. 2014, https://tools.ietf.org/html/rfc7384.

[7] D. L. Mills, B. Haberman, Ed., "Network Time Protocol Version 4:
Autokey Specification," RFC 5906, doi 10.17487/rfc5906, June 2010.

[8] E. Rescorla, "The Transport Layer Security (TLS) Protocol Version
1.3," RFC 8446, 10.17487/rfc8446, Aug. 2018.

[9] K. Teichel, D. Sibold and S. Milius, "First Results of a Formal Analysis
of the Network Time Security Specification," 218-245. 10.1007/978-3-
319-27152-1_12, Dec 2015.

[10] M. Langer, "Network Time Security v0.9.0," [Online] Available
(04/26/2019): https://gitlab.com/MLanger/nts/tags/v0.9.0.

[11] M. Langer, "Network Time Protocol v0.6.0," [Online] Available
(04/26/2019): https://gitlab.com/MLanger/ntp/tags/v0.6.0.

[12] Network Time Foundation, "NTPD," [Online] Available (04/26/2019):
https://github.com/ntp-project/ntp4

Fig. 11. Systematic time offset caused by NTS

	Vorspann Comparison NTS Drafts
	IFCS19_0086_FI - final submission

