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ABSTRACT 
Debugging software for a FPGA-based microcontroller can be a 
strenuous task without facilities like single stepping, register and 
memory dumps etc. Even more critical is the debugging of real-
time software like interrupt service routines. A debugger for a 
FPGA-based microcontroller written in VHDL has been enhanced 
in hard- and software to provide a flexible trace buffer for non-
interfering real-time recording of microcontroller program, data 
and status information as well as freely definable user signals for 
later off-line inspection. The Block RAM feature of the FPGA is 
used to store the information. For multiple recordings the memory 
may be divided into several parts of suitable size permitting pre- 
and post-trigger modes. Complex trigger facilities (watchpoints) 
allow to trigger on various conditions for an efficient deployment 
of the available memory. Up to three independent watchpoints 
can be combined by logical operations and defining sequences or 
to arm single events just for a certain time. The self-developed 
software front-end of the debugger that communicates via JTAG 
interface with the hardware and the interfaces in the FPGA has 
been extended for easy arming of the watchpoints and configuring 
of the trace buffer as well as for user-friendly display and storing 
of the trace buffer data.   

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – Trac-
ing, Debugging aids; D3.4 [Programming Languages]: Proces-
sors – Debuggers; B.8.1 [Hardware] Performance and Reliability 
– Reliability, Testing, and Fault Tolerance; C.0 [Computer Sys-
tems Organization]: General – Hardware/software interfaces; 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
User interfaces.  

 

General Terms 
Performance, Design, Reliability, Verification. 

Keywords 
Microcontroller, Microprocessor, SoC, FPGA, VHDL, Soft-core 
Processor, Watchpoints, Trace Buffer, JTAG Communication, 
Real-time Debugging. 

1. INTRODUCTION 
Modern SoC designs often face difficulties in debugging software 
for the microprocessors embedded in the design. Where powerful 
in-circuit emulators or on-chip hardware assisted debuggers allow 
efficient testing of the software with standard controllers and 
processors problems arise when using soft-core processors etc. in 
FPGAs. Often the only solution is using old-fashioned software 
debuggers which typically require some of the processor re-
sources by themselves. Frequently, interference of the debugger 
with the target device makes full system tests impossible. The 
situation becomes even more complicated when one needs to 
debug software routines which cannot be stepped through but 
must be run in real-time for verifying their correct implementa-
tion, for example, interrupt service routines, external communica-
tion routines and real-time data processing. Often the only possi-
bility is routing internal signals to FPGA ports for external control 
of software behavior. 

At the Computer Engineering Lab of the University of Applied 
Sciences Braunschweig/Wolfenbuettel a PIC™-compatible mi-
crocontroller called VHDL-PIC had been developed and opti-
mized in former projects [1, 3, 4, 7]. The VHDL-based controller, 
fully compatible to the cores of the PICmicro™ mid-range MCU 
family [11], features typical peripherals such as ports, timer, 
UART, etc., at a frequency of up to 100 MHz, i.e. with processing 
power of up to 25 MIPS. 

Developing software for this controller (implemented in a Xilinx 
Spartan 3 FPGA) revealed the typical problems mentioned above. 
In addition, new code had to be transformed into VHDL ROM 
initialization code and all the steps of the hardware implementa-
tion process had to be run through again. To solve these problems 
a hardware assisted non-interfering debugger was developed [5, 
9]. The VHDL hardware interface connects to the microcontroller 

 



and communicates via the JTAG port with the user interface (de-
bugger front-end) on a Microsoft Windows™ based PC. In addi-
tion, code can be downloaded directly without anew hardware 
implementation. 

Though the debugger has all the typical and necessary functions 
the debugging of real-time software routines still remained nearly 
impossible. As the JTAG interface does not permit high-speed da-
ta transfer which would be needed to send real-time processor 
status information the development of a flexible trace buffer was 
undertaken to record and store those information during real-time 
processor runs. To derive maximum benefit from the features of 
the trace buffer powerful watchpoints allow triggering of the re-
spective recordings. The necessary hardware for trace buffer and 
watchpoints was included in the hardware interface on the FPGA 
whereas the software front-end was enhanced to configure and 
arm the triggers as well as present and store the trace results. 

The development and implementation of the trace buffer and the 
watchpoints are presented in this text. In the following section a 
system overview will sketch the whole system concentrating on 
the debug module as a whole, whereas section 3 describes the 
features and the implementation of the new watchpoints. Section 
4 discusses the trace buffer, its modes and functions and section 5 
gives some detail on the software front-end enhancements for the 
watchpoints and the trace buffer and passes over to the conclu-
sion.  

2. SYSTEM OVERVIEW 
As mentioned above, the development environment of the VHDL-
PIC consists of a hardware interface in the FPGA, the communi-
cation via JTAG and the software front-end on a PC hosting the 
debugging software and the graphical user interface, see figure 1. 
The front-end presents the status of the microcontroller to the 
user. As the debug module has only access to the controller’s sig-
nals and busses when it is stopped, a timer regularly checks 
whether the processor is running or not. In latter case the front-
end reads all relevant information (registers, memory, ports etc.) 
and updates the respective windows. Changes to the previous state 
are marked in red for convenient debugging.  

Front-end and back-end communicate over a USB or a parallel 
port on the PC side and the JTAG port in the FPGA. The JTAG’s 
test access port (TAP) controls the communication. It provides 
two shift registers, USER1 and USER2. To send a command to 
the hardware interface, it is shifted into one of these registers. The 
hardware interface stores its response in the respective shift regis-
ter which is shifted out to the software front-end with the next 
transmission [5, 9]. The communication is always front-end dri-
ven, the hardware cannot initiate any data transfer. The debugging 
software provides several functions to navigate the TAP and to 
shift the USER registers. The 32-bit USER 2 register is used to 
transmit read or write commands where the lower 16 bits com-
prise the data and the upper ones address the memory position and 
hold the command itself. The 8-bit USER 1 register receives short 
commands like a manual stop or inquiries like ‘has the PIC 
stopped?’. The hardware interface connects to the communication 
interface and decodes the received commands and feeds different 
signals and busses to get the requested information. 

All registers and memories can be read and modified by the 
hardware interface. To access the registers the hardware interface 
feeds the normal data bus. The program memory and the internal 
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RAM are implemented as dual-port RAMs for easy read and write 
access by the controller and the debug module.  

The processor has a 14-bit instruction word which is stored in a 
16-bit dual-port RAM. The unused two MSBs mark breakpoints 
which therefore can be set at every instruction. The software dif-
ferentiates between static and temporary breakpoints. Temporary 
breakpoints will be deleted when reached and are used to imple-
ment functions like ‘run to cursor’, ‘step over’ or ‘step out’. 

The hardware interface connects to the new watchpoint and trace 
buffer hardware the same way it does with memories and registers 
configuring them and reading back relevant data. The following 
sections describe the configuration of the watchpoints and the 
read-out of the trace memory in more detail. 

3. WATCHPOINTS 
As breakpoints mark specific code lines watchpoints are more 
flexible and control dedicated internal occurrences or states of the 
processor. If such a predefined event happens the processor may 
be stopped or data recording in the trace buffer unit may start. 
Thus watchpoints may confine a data recording to a more relevant 
section of the executed program. As mentioned above, debugging 
FPGA-based processors is often lacking features like watchpoints 
and trace buffers. Most available solutions concentrate on ASIC 
implementations for example as in [2]. 

The triggering process is a two-layered approach. On the first 
level one defines the event on which a specific watchpoint hard-
ware will ‘fire’. The second level (combination layer) combines 
the triggering action of several watchpoints to a complex trigger 
event. The current implementation possesses three independent 

Figure 1. System block diagram. 



watchpoint instances each owning its individual hardware re-
sources. Those three may be flexibly linked to form more com-
plex trigger conditions. 

3.1 Defining an Event in a Watchpoint 
Each instance accesses the relevant signal paths in the processor. 
This encompasses both, internal control busses as well as full data 
paths e.g. at the ALU or the program memory. 

The following event sources can be monitored: 

 executing a specific command, 

 read and/or write access to a dedicated RAM location 
(GPR) or special function register (SFR) or a location 
within specific address range, 

 executing a dedicated code line in program memory or 
any command within specific address range, 

 a specific result (or value range) of the ALU operation, 

 alteration of CARRY or ZERO flag, 

 occurrence of an interrupt or an timer 0 overflow 

All above mentioned event sources can be combined by either a 
logical AND or a logical OR.  

Monitoring of control signals solely samples an alteration of the 
signal. Monitoring internal data and address paths offers an addi-
tional way for defining an event. At first, the given value is com-
pared against the current state on the path by a comparator. In 
addition, it is possible to mask out several bits by a filter value. 
For example, masking out the two LSBs of a data memory ad-
dress allows monitoring an address range instead of a single ad-
dress value. In addition, by use of an occurrence counter, see 
figure 2, single or multi-occurrences of the qualified event may 
lead to a trigger signal. 

3.2 Combining Events 
Combining independent watchpoint instances allows the defini-
tion of powerful and flexible trigger conditions to start a data 
recording or to halt the processor. The simplest way to combine 
single instances is a logical OR. In this case an occurrence of a 
trigger event of a single watchpoint suffices to start the data re-
cording. 

Cascading watchpoint instances allows more specific qualification 
of the final trigger event. If cascading, the trigger signal of in-
stance I is not used to start data recording, but to arm instance II. 
Thus the first trigger signal starts the monitoring of event II. Arm-
ing the subsequent event can be limited by a cycle counter which 
is loaded with a pre-calculated value. After detection of trigger I 
the cycle counter starts. If this counter overflows before event II 
occurs instance II will be disarmed again. If instance II triggers 
within the predefined number of processor cycles, the signal is 
passed on to the trace buffer or – if cascading three instances – is 
used to arm instance III. Each cycle counter can be set to a sepa-
rate value.   

For optimal use of the available memory the trace buffer re-
cording may be restricted to a certain number of recording ses-
sions. In that way trigger signals are ignored when the trace buffer 
number has been reached. This allows the user to change the trig-
ger conditions and fill up other parts of the memory with addi-
tional recordings.  

Instead of stopping the trace buffer recording it is also possible to 
stop the processor. This allows running to a dedicated point of the 
program, stop the execution and analyze the following parts in 
single step mode. Because the trace buffer is still armed, the sin-
gle stepped executions are recorded also.  

3.3 Configuring Watchpoints 
Data exchange between watchpoints and front-end works uni-
directionally by passing configuration data through the trace 
buffer components. Configuring the combination layer includes 
settings for combining several instances. In case of a simple OR 
only the comparative values for disarming the trace buffer or 
stopping the processor are to be set up. In case of cascading the 
instances also the values of the cycle counters have to be pro-
grammed. To allow individual addressing each instance is 
equipped with a hard coded ID.  

4. TRACE BUFFER 
The trace buffer is responsible for correct and reliable real-time 
recording of the processed data to allow the later off-line analysis. 
Therefore it is necessary to regard the internal processor timing 
and the execution of the instructions. The implemented version of 
the trace buffer is a trade-off between preferably low hardware 
assignment and an efficient use of the available memory. 

4.1 Data Memory 
The trace memory is constructed using the Block RAM resources 
of the used Spartan III FPGA. For targeting various requirements 
the trace buffer provides data recording in different modes: 

 recording a program part as large as possible (single 
session mode), 

 multiple recording of a limited program part (multi-
session mode), 

 the recorded program part is starting at time of trigger 
(post-trigger mode), 

 the recorded program part contains data which were 
chronological ahead of the trigger impulse (pre-trigger 
mode). 

Figure 2. Cascading watchpoints. 



 

To achieve the above mentioned characteristics a flexible memory 
allocation is needed. While the management of post-trigger re-
cordings is quite easy, the recording of pre-trigger data requests 
some more considerations. To avoid the fragmentation of the me-
mory it has to be divided into discrete parts, each used as a ring 
buffer, see figure 3. For an effortless distinguishing of the upper 
ring buffer limit, the dimension is fixed to a power of two. Fur-
thermore the addresses of the section are running from ...000...001 
(instead of beginning with ...000...000) to ...100...000 so that the 
last address of every section toggles the so-called indicator bit 
from 0 to 1 (as shown in figure 3). In post-trigger mode, hitting 
the upper border stops data recording. In pre-trigger mode it resets 
the ring buffer address counter. 

Opposite to post-trigger mode, where recording starts by occur-
rence of the trigger signal, in pre-trigger mode the data is stored 
continuously before the occasion of trigger as well. To preserve 
the delimited pre-trigger part while the triggered recording is in 
progress a corresponding stop address has to be calculated. Pre-
venting a complex address calculation at runtime, most of the 
values needed are pre-calculated by the software front-end. Fi-
nally, hardware calculates the stop address in three clock cycles. 
As shown in figure 4 there are three cases to be distinguished: 

1. The part of pre-trigger data is fitting exactly between the 
segment’s start address and the point of trigger. Also, end of 
the segment is exactly the stop address. 

2. The part of pre-trigger data is coherent in the middle of the 
ring buffer. In this case the stop address is lower than the 
point of trigger. When calculating the stop address the over-
flow of the address pointer has to be considered. A subtrac-
tion of pre-trigger depth and point of trigger results in the 
stop address.  

3. The pre-trigger part is divided into two sections. Similar to 
case 1 the stop address is higher than the point of trigger. For 
calculating the stop address the post-trigger depth has to be 
added upon the point of trigger. 
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4.2 Data Recording 
There are two different groups of data sets which will be stored 
within a session. The trigger data set comprises data of selected 
special function registers, the values of the program counter and 
the Block RAM address counter. These values are saved at occur-
rence of the trigger signal and are needed for reconstructing and 
interpreting data in the front-end. This data set allocates the two 
lowest locations in each trace buffer segment. 

The pre-trigger and post-trigger data sets consist of runtime data 
e.g. the value of the data bus or arithmetic flags. Because of the 
small capacity of on-chip memory only dynamic values are saved 
at runtime. By contrast fixed values e.g. FILE-Register addresses 
or literals are not stored at runtime. They can be read and recon-
structed from program memory or a related hex-file. 

When executing jumps runtime data will differ from recording a 
regular instruction. To allow reconstruction of the pre-trigger part 
both, source and target address of the program counter are impor-
tant to know. On the other hand values of the data bus or arithme-
tic flags are uninteresting in this case. 

For an improved and more flexible use of the trace buffer unit, 
eight bit called ‘user byte’ are reserved to save special signals. 
Assigning an arbitrary data source within the VHDL code to this 
part of the trace buffer provides a broad spectrum of applications. 

5. SOFTWARE FRONT-END 
The former described enhancements of the FPGA design would 
be futile without matching enrichments of the software front-end. 
After a system reset the trace buffer unit is disarmed and internal 
configuration registers are programmed with standard values. 
Equally, all watchpoints are deactivated and filled with startup da-
ta, too. 

It takes four steps to use the implemented trace enhancements: 

 segmenting trace memory as desired and defining depth 
of pre-trigger fraction, 

 setting up trigger behavior, 

Figure 4. Pre-trigger position in trace buffer segment. 

Figure 3. Trace buffer segment addressing. 



 arming trace buffer unit, 

 reading out data from trace memory. 

5.1 Configuring the Trace Buffer 
Partitioning of the trace memory is guided by a dialogue box. 
Using a memory organization of 512 x 36 bits the number of re-
cordable sessions is selectable by a combo box from one session 
with 512 rows up to 16 sessions, each with 32 code lines. If pre-
trigger mode is selected, the division of pre- and post-trigger 
fragment is stepless variable. Naturally, in post-trigger mode the 
depth of the post-trigger fragment is equal to segment size. 

Using the existing interface routines processed data can be up-
loaded into the trace buffer unit. Moreover data can be down-
loaded from FPGA to the front-end as well. This feature is essen-
tial for correct read-out of trace data. 

5.2 Configuring the Watchpoints 
Configuration of the watchpoints as depicted in section 3 is also 
guided by a dialogue box. Adequately to the two-layer architec-
ture of the watchpoint hardware, the watchpoints are defined in 
two steps. 

Each watch instance within the FPGA finds its counter-part in 
software and equal to the hardware combination layer there is an 
overall configuration window for combining the different events 
as shown in figure 5. 

The ‘Summary’ section displays the settings of each configured 
event, in the lower sections event related settings may be ad-
justed. The structure of the ‘Combine Events’ section depends on 
the selected type of merging of events and the number of acti-
vated watch instances. 

In figure 5 all three events are activated and cascaded. The value 
of the cycle counter described in section 3.2 is set by an addi-
tional slider. 

 

Adjustments for stopping the processor or disarming the trace 
buffer can be made in the lowest section. If ‘No Action’ is se-
lected the trace buffer will be recording sessions until the memory 
is totally filled.  

5.3 Controlling the Trace Buffer  
After the trace buffer is completely configured, all watchpoints 
are defined and the processor is running it is time to arm the trace 
buffer unit. Therefore a special dialogue box exists, where the 
trace buffer can be armed or disarmed and the processor can be 
stopped or started again. Within this dialogue both, the number of 
already written sessions and the total number of segments are 
displayed.  

5.4 Read-out and Reconstruction of Data 
After recording the desired number of sessions the memory data 
has to be read out. To assure the complete reconstruction of the 
traced program execution the recorded data has to be associated 
with the original hex formatted program file. Associating both 
sources yields the complete data set to display the executed pro-
gram to the user as shown in figure 6 (see next page). 

Starting at point of trigger the post-trigger fraction is recon-
structed first. If there is also a pre-trigger fraction it is rebuilt by 
starting at point of trigger up to the first row in the data set. A 
second pre-trigger reconstruction cycle starting at the first row 
and ending at the point of trigger rebuilds the values of WORK 
register. Now, the user can easily browse through the recorded 
sessions and gets all relevant information at a glance. If desired 
all results may be saved to disk.  

6. CONCLUSION 
The necessity to debug real-time software like interrupt service 
routines led to the enhancement of an existing debugging system 
for soft-core SoC processors and controllers with hardware watch-
points and a trace buffer.  

Each of the three freely definable watchpoints can monitor certain 
instructions or individual code lines or ranges and reading from 
and/or writing to arbitrary memory locations or ranges in RAM or 
special function registers. Furthermore they watch the ALU out-
put for a special value/value range and the occurrence of an inter-
rupt, a timer 0 overflow and a change of flags. The configuration 
dialogue allows the selection of a single incident of the above 
mentioned events or of nearly any combination of them. Addi-
tionally, multiple occurrences of the specified events can be set 
up. A watchpoint may be used alone or two or three can be cas-
caded to specify very specific sequences of events. The generated 
trigger signal will stop the processor like a breakpoint or will start 
the recording into an armed trace buffer. 

The trace function uses a FPGA-integrated Block RAM to store 
all relevant information of processor internal events.  The mem-
ory can flexibly be divided to permit single and multi-session 
recording i.e. from a single session with 512 code lines up to 16 
sessions with 32 lines. The freely adjustable position of the trigger 
point within the respective buffer sections allows any kind of 
post- and pre-trigger mode. In combination with the three watch-
points single recordings or recording sequences in different buff-
ers are possible. 

Figure 5. Watchpoint configuration dialogue. 



 

The trace buffer stores all relevant information which cannot be 
reconstructed. Additionally, the user may connect the input of a 
so-called user byte to specific points of interest in the design and 
have the data stored synchronously with the other information. 

Watchpoints and trace buffer are configured and armed in con-
figuration dialogues within the GUI of the existing debugger. The 
software front-end also reads the trace buffer sessions and recon-
structs all derivable data. It presents the complete information to 
the user and allows the storage of it for later comparison etc. 

The whole functionality is partitioned between hardware and soft-
ware. Generally, everything which can be handled off-line is 
coded in software. All real-time features are implemented in the 
FPGA using VHDL. During the development implementations 
have been shifted from hardware into software and vice versa 
several times. Thus a balanced hardware-software co-design re-
sulted. Though the number of watchpoints and the size of the 
trace buffer are fixed an adaptation may easily be accomplished. 
Also, the design should easily be adaptable to other processors 
because of is layered approach. Surely, the hardware interface 
will need the most changes but the front-end will need some 
modifications, too. Currently, a pipelined version of the VHDL 
controller is under development [6, 10] to which the debug mod-
ule will be ported. 

The flexible trace buffer in combination with the powerful watch-
points will ease code debugging dramatically especially with real-
time software routines. Code debugging in FPGA-based micro-

processors and microcontrollers can now be as convenient as with 
discrete standard parts using powerful in-circuit emulators. 
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Figure 6. Trace buffer data presentation. 


