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Abstract—The PTPv2.1 standard provides new protection 
mechanisms to ensure the authenticity and integrity of PTP 
messages. However, the distribution of the necessary security 
parameters is not part of the specification. This paper proposes a 
simple and practical approach for the automated distribution of 
these parameters by using a key management system that enables 
the Immediate Security Processing in PTP. It is based on the 
Network Time Security protocol and offers functions for group 
management, parameter updating and monitoring mechanisms. A 
Proof-of-Concept implementation provides initial results of the 
resources required for the key management system and its use. 

Keywords—IEEE 1588, PTPv2.1, NTS, Key Management 

I. INTRODUCTION 
In many areas, exact time synchronization of devices is 

important for a correct operation. However, areas such as the 
financial sector, telecommunications or electrical power 
distribution depend on accuracies that only the Precision Time 
Protocol (PTP) can provide. It uses packet-based networks and 
achieves synchronization accuracies in the nanosecond range. 
The first version of PTP was released in 2002 [1] and was 
revised in 2008 as PTPv2 [2]. The current PTP version 2.1 [3], 
which is backwards compatible to PTPv2 and offers several 
functional enhancements. 

For a long time, little attention was paid to the protection of 
time information. The Annex K of PTPv2 [2] described an 
experimental approach to the protection of PTP messages for the 
first time. But this was not applied in practice, also because of 
depicted weaknesses in the protocol flow in later analyses [4] [5] 
[6]. To acknowledge the increased demand on secured time 
transfer, the specification of the new PTP version 2.1 
incorporates a normative Type-Length-Value (TLV) extension 
for authentication, which protects the integrity and authenticity 
of PTP packets. Nevertheless, PTPv2.1 does not specify the 
necessary key distribution mechanism and only suggests 
possible approaches in its new Annex P (see Chapter II). These 
proposals base upon existing key distribution protocols, which 
are not designed for PTP and therefore need to be modified or 
extended. Thus, no straightforward solution for the realization of 
such a key management system exists. 

To address this gap, this paper proposes a simply kept 
automatic key management (KM) for PTP version 2.1 based on 
the Network Time Security Protocol (NTS) [7]. NTS is designed 

for securing time protocols such as the Network Time Protocol 
(NTP) [8]. Due to the development work on NTS back then, it 
was not yet considered in the current PTP standard as a possible 
key management method. The concept presented here extends 
the NTS protocol in such a way that it can also be used for key 
distribution in PTP networks. Thus, secure PTP connections as 
well as secure NTP connections (e.g. as a so-called watchdog 
mechanism for PTP [9]) are realizable using a common key 
management system. 

Similar to the Group Domain of Interpretation protocol 
(GDOI) [10] – one of the approaches suggested in Annex P – 
our proposal uses a basic group management to secure PTP 
multicast connections. It supports a simple group control, offers 
a cyclic update of security parameters and works with the 
PTPv2.1 concept of Immediate Security Processing (see II.A.1). 
Since our approach is directly oriented towards PTP, the 
protocol design does not contain any unnecessary complexities 
and is easy to implement. This is an advantage in comparison to 
GDOI, which is aligned to IPsec and cannot be used directly for 
PTP. As with GDOI, our NTS-based multicast approach also has 
limitations for PTP unicast connections (e.g. scalability), which 
are discussed in this paper.   

In the further course of this paper, Chapter II presents basic 
information about PTP security and the operation of the Network 
Time Security protocol.  Subsequently, Chapter III provides a 
brief history of the progress of PTP security and the related 
work. Chapter IV describes the proposed key management in a 
short form, explains the basic functions and compares the 
approach with GDOI. The security considerations are then 
discussed in Chapter V. The following Chapter VI depicts  
the automatic key management in detail and describes some 
specific features of the method. The results of a first Proof-of-
Concept (PoC) implementation as well as the performance 
comparison of the feasible MAC algorithms are shown in 
Chapter VII. The conclusion and the further course of action are 
finally discussed in Chapter VIII. 

II. PRELIMINARIES 
This chapter explains the most important security aspects  

of the current PTP version 2.1 and gives an overview of the 
functionality of the Network Time Security protocol. 



A. New PTP Security Mechanisms 
The security concepts in Precision Time Protocol v2.1 are 

separated into four so-called Prongs [3], which can be applied 
individually or together to protect the PTP messages and the  
PTP network. 

1) Prong A: Integrated Security Mechanism: Prong A 
describes a built-in mechanism of PTP to ensure the authenticity 
and integrity of the PTPv2.1 messages. This mechanism consists 
of three components: key management, security processing 
method and AUTHENTICATION TLV. 

The AUTHENTICATION TLV (AuthTLV) is usually 
located at the end of a PTP message and contains various 
security parameters as well as an Integrity Check Value (ICV). 
Together with the Security Policies (SP), the contained security 
parameters allow a recipient to identify the so-called Security 
Association (SA). The SA contains all necessary information to 
construct the AuthTLV and recalculate the ICV. The ICV is 
generated over the entire PTP message including the AuthTLV 
omitting the ICV field. If several protection mechanisms are 
used simultaneously, multiple AuthTLVs can also be present in 
a PTP-message. 

The protection mechanisms are distinguished into Immediate 
Security Processing and Delayed Security Processing. With the 
immediate variant, the necessary security parameters and keys 
are transmitted upfront, before the secure PTP communication 
takes place. This allows all devices that know these parameters 
to immediately check incoming PTP messages. It also enables 
Transparent Clocks (TC) to modify correction fields in the PTP 
messages and protect them subsequently. PTPv2.1 proposes the 
GDOI protocol as a key management system, which allows for 
extended group control.  

With the delayed variant, the key required for verifying the 
messages is disclosed by the master a posteriori. In this method 
the time is divided into intervals of fixed duration. All messages 
that are transmitted in one of these time slots are secured with 
the respective interval key. The disclosure of the key used takes 
place in a later interval. The Timed Efficient Stream Loss-
Tolerant Authentication Protocol (TESLA) [11], which was 
designed for securing broadcast messages, represents such a key 
management system.  

The choice of the security processing method is application-
specific and can be defined in PTP profiles. The protocols 
suggested by PTPv2.1 for this purpose (GDOI and TESLA) are 
recommendations and can be replaced by other methods as long 
as they permit the construction of the AuthTLV. In general, the 
PTPv2.1 specification allows the use of both manual and 
automatic key management systems. In a manual KM system, 
the security parameters are transferred to the PTP devices 
upfront and are usually static. While this is feasible for small 
PTP networks, it is not a solution for larger networks due to 
scaling issues. In addition, the maintenance effort increases 
when parameters and keys need to be updated. An automatic KM 
system solves these problems and enables a much better 
administration of the PTP network. However, PTPv2.1 does not 
define a specific key management system nor the associated 
communication or message structure. 

2) Prong B: External Transport Security Mechanism: 
Another security strategy is the use of external mechanisms like 
MACsec [12] or IPsec [13]. Both approaches provide 
authenticity and message integrity and optionally allow the 
encryption of the higher protocol layers. MACsec works on 
layer 2 of the Open Systems Interconnection (OSI) model and 
also protects protocols such as the Address Resolution Protocol 
(ARP) and the Dynamic Host Configuration Protocol (DHCP), 
but is restricted to switches or end-to-end connections. IPsec 
works on layer 3 and allows tunneling across networks, but due 
to the protocol stack it cannot be used in conjunction with the 
802.3 mode (Ethernet) in PTP. 

3) Prong C: Architectural Mechanisms: This prong provides 
guidance on how to protect a PTP network and provides 
solutions to mitigate denial of service attacks (DoS) by 
increasing the redundancy. This includes additional time sources 
and Grandmaster Clocks as well as redundant network paths. 

4) Prong D: Monitoring and Management: Another part is 
monitoring the network to detect attacks or problems in the 
infrastructure. This includes unexpected offset jumps or  
large changes in peer-to-peer (P2P) measured PTP link delays. 
The use of a watchdog mechanism [9] can prevent or mitigate 
the consequences of such delay attacks. 

B. Network Time Security (NTS) 
Even the widely used Network Time Protocol (NTP) [8] 

offered insufficient security mechanisms for a long time. One of 
them is the older and still secure symmetric key approach, which 
is unfortunately not scalable and therefore futile in typical NTP 
use cases. Although this problem was subsequently solved with 
the Autokey [14] method, an analysis in 2012 revealed other 
serious design flaws of that procedure [15]. For this reason, the 
Network Time Security (NTS) [7] protocol was developed to 
provide the necessary security functions. NTS currently focuses 
on NTP, but is designed in such a way that it can be extended to 
other time protocols. 

An NTS-secured communication generally consists of three 
parts: The Transport Layer Security v1.3 (TLSv1.3) [16] 
handshake, the parameter negotiation and the secured time 
transmission. Together, TLS connection and parameter 
negotiation form the NTS Key Establishment protocol (NTS-
KE) and can act as a key management system (blue boxes in 
Figure 1). In the first phase (Phase 1.1), TLSv1.3 enables peer 

Phase 1.1: NTS Key Establishment Protocol
setting up a TLS channel

Phase 1.2: NTS Key Establishment Protocol
exchange security parameters

Phase 2: Secured PTP Communication
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Fig. 1. Phases in the establishment of a secured time transfer 



authentication by certificates and provides authenticity, message 
integrity and confidentiality of following data transmitted over 
the TLS channel. The messages subsequently exchanged via 
TLS (Phase 1.2) depend on the time protocol to be protected. 
These always consist of a set of Records, which each contains 
necessary information (e.g. protocol type, algorithms, IDs, ...). 
Since PTP has different requirements than NTP, new Records 
must be specified that follow the typical TLV Record structure 
defined in NTS. Chapter VI describes in detail which existing 
Records can be used for PTP and which new ones are 
introduced. After transmission of these data the TLS channel is 
closed and the secured time transfer begins. 

 While the message exchange in the first phase of NTS 
(Phase 1.1 and 1.2) is applicable to both NTP and PTPv2.1, the 
second phase addresses the time protocol to be secured itself. In 
NTP, extension fields are used to transfer encrypted security 
parameters in the form of cookies between client and server. 
These are used also to protect the NTP messages, which allows 
the server to be stateless and ensures key freshness and 
untraceability of the client. But this procedure is not useful for 
PTP, since both the communication structure and the security 
requirements differ. On the one hand, the cookie method is  
not applicable to multicast connections, while on the other  
hand tracking protection and statelessness are not required. 
However, for PTPv2.1 the Prong A approach is a reasonable 
solution. The PTP integrated security mechanism already 
describes the general content and structure of the AuthTLV and 
the NTS-KE protocol can provide the security parameters 
needed. If the parameters expire during the protected time 
transfer operation or other problems occur, the NTS-KE protocol 
can be executed again. 

III. RELATED WORK 
This section provides a brief overview of the security 

developments since the last PTP version 2.0 in 2008 and 
addresses the advantages, as well as the limitations of current 
solutions for PTPv2.1. 

A. State of the Art 
Since IEEE 1588-2008 (PTPv2) [2] the security aspect gains 

more and more attention. Precision Time Protocol v2.1 already 
provided a first experimental security mechanism, Annex K, 
which offered source authentication, message integrity and 
protection against replay attacks. However, Annex K was not 
used in practice and showed some design flaws [4] [5] [6]. It 
proposed a three-step authentication process with a challenge-
request-response mechanism used in the start-up phase.  
This method works, but is inefficient and can be replaced by a 
one-way authentication. Also, the sequence number may be too 
short to effectively protect against replay attacks. Furthermore, 
the distribution of keys is complex and could be improved. 
Another point is the Keyed-Hash Message Authentication Code 
(HMAC) that is used for message protection, which is rather 
unsuitable in one-step mode where on-the-fly protection of 
messages may be necessary.  

Several publications followed, which presented suggestions 
for improvement of Annex K and alternative key distribution 
mechanisms like GDOI and TESLA. Naiara Moreira et al. 

summarized these in their paper [4] and compared the 
characteristics of the different approaches. In addition to these 
methods for securing PTP messages, they also examined further 
protection mechanisms such as MACsec and IPsec (Prong B) in 
their paper. NTS was also a part of this investigation, which at 
that time still included TESLA as an approach in its draft [17]. 
In the specification phase of PTPv2.1, these proposals led to an 
update of the security measures now defined in the clause 16.14 
and the new Annex P [3]. Clause 16.14 defines the normative 
AUTHENTICATION TLV for securing PTP messages (Prong 
A). Annex P describes in general terms the four prongs (see 
Chapter II.A) and potential key management systems (Prong A: 
GDOI and TESLA). The previous Annex K was thus obsolete 
and therefore removed. A further approach followed from 
Kemparaj and Kumar, who deals with the full encryption of PTP 
messages [18] without an external key management system. 
However, this approach was not further considered in the 
PTPv2.1 specification. Also the current NTS protocol [7] was 
not mentioned in PTPv2.1 as a possible key management system 
due to its draft status at the time. 

The functionality of clause 16.14 (Prong A: PTP Integrated 
Security) has already been confirmed by two implementations. 
Ezzeldin Shereen et al. present in [19] a Linux PTP 
implementation that examines the two procedures Immediate 
Security Processing and Delayed Security Processing 
(unauthenticated). Dragos Maftei et al. present a PTPd-based 
implementation [20], which also supports immediate and 
delayed security processing. Both implementations use a manual 
key management system instead of GDOI (immediate 
processing) or TESLA (delayed processing). 

B. Limitations of GDOI and TESLA 
The application of GDOI [10] requires, like in the NTS-

based proposal, a phase-one protocol. Therefore, it uses the 
Internet Key Exchange v2 (IKEv2) protocol [21], which is 
standardized and available like GDOI. However, both are 
designed for IPsec, which makes a direct use in PTPv2.1 difficult 
and requires additional specification effort. GDOI’s advantage 
lies among other things in the immediate integrity check of PTP 
messages and the support of Transparent Clocks. However, the 
disadvantage is the lower level of source authentication, because 
every trusted member is able to modify the messages in his own 
group. More details are discussed in chapter IV.B comparing 
GDOI to our own NTS-based proposal. 

On the other hand, TESLA offers a strong source 
authentication to the master, so that group members cannot 
change messages. However, the use of TESLA in a PTP context 
is very difficult, because every PTP instance which could 
become a master must be able to operate as a TESLA server. 
Slaves are also burdened additionally, because the verification 
of PTP messages is delayed and the PTP-messages have to  
be stored temporarily. Furthermore, TESLA requires a phase-
one protocol for the bootstrapping mechanism (not defined) as 
well as an already time-synchronous PTP node (in the seconds 
range). It does not provide any group management functions and 
does not support Transparent Clocks. Moreover, TESLA can be 
broken with delay attacks in a short time [22] and needs a 
secured watchdog mechanism [9] to prevent this. 



IV. KEY MANAGEMENT FOR PTP – OVERVIEW 
Our key management system combines the NTS-KE 

protocol with the PTP Integrated Security Mechanism. It enables 
the simple and fast integration of an automatic key management 
system (NTS-KM) into PTP networks. Based on the Immediate 
Security Processing of messages, this KM also allows the 
formation of groups (e.g. based on PTP domains). These can be 
formed by an administrator at the PTP nodes or on the KM server 
side. Using a cyclic update process, security policies, keys, and 
other parameters can be changed during operation without 
interrupting the PTP communication. Moreover, the approach 
enables simple group control, to exclude PTP nodes from a 
group or assign them to other groups. In addition, the protocol 
can be extended to include further functionalities. 

The following section briefly describes the steps that a PTP 
node must perform to establish a secured communication and 
how the KM server works. Then the approach depicted here  
is compared to a GDOI-based solution. For a more detailed 
description of the KM procedure and configuration, also see 
Section VI. 

A. KM-Protocol Overview and Securing Process 
The pre-configuration of the KM server and the PTP node is 

the first step to secure the communication. Both sides require 
certificates to check the authenticity of each other. 

Any PTP node that wants to be part of a secured PTP 
network first starts by establishing a TLSv1.3 connection to the 
KM server (see Figure 2). The host name or the IP address of the 
server is given to the PTP node in advance, e.g. by using a 
configuration file. The TLS handshake authenticates the KM 
server and authorizes the PTP node to join the secure PTP 
network. In addition, all data transmitted via the TLS channel 
are secured and encrypted. 

The PTP node now sends a GroupRequest message over the 
established TLS channel. This message simply consists of a 
sequence of data blocks (so-called Records) in a Type-Length-

Value (TLV)-like format. Each block transfers specific 
parameters and is easy to parse without special decoders. The 
request sent by the PTP node contains the wish to join a specific 
group or, if the authorization allows for it, multiple different 
groups. The group selection is derived from the configured PTP 
domain and sdoId of the PTP node. The domain permits the 
separation of PTP network groups, while the sdoId enables the 
distinction between PTP profiles. This prevents complications 
when different profiles use the same PTP domain. 

After reception of the GroupRequest the KM server first 
checks whether joining the group is allowed or whether this was 
prohibited by restrictions set by the administrator. The KM 
server stores the decision in a GroupResponse message that is 
structurally identical to the GroupRequest. If access is granted, 
the security policies and security parameters of the group are 
also included. Depending on the security policy requirements, 
different security parameters (Security Associations) can be 
used for different PTP messages. The message also contains 
information about the validity period of these parameters and 
when the PTP node can start to retrieve a new set of parameters 
from the KM server. In addition, if new parameters are already 
available for the following validity period, the KM server 
embeds them in the GroupResponse, too. In this way, PTP nodes 
can use the new parameters immediately after the expiration of 
the current ones without interruption of the PTP communication. 
After sending the GroupResponse message, the KM server also 
ends the TLS connection correctly with a close notify message. 
The communication with the KM server is thus completed and 
the PTP node is able to join the secured PTP communication. 

To protect or check a PTP message, the PTP node first reads 
the Policy Limiting Fields (PLF) from the PTP header of the 
respective message. Among other fields, these include the 
domainNumber, the sourcePortID and the messageType. If a 
PTP device manages different security policies (e.g. for different 
ports), the PLF can be used to identify the correct SP. The SP 
then provides information about which PTP messages are to be 
secured. If a protection is required for the message type, the SP 
can be used to identify the corresponding Security Association, 
which specifies how the protection is to be performed. Using the 
parameters contained in the SA, the construction of the 
AuthTLV including the calculation of the Integrity Check Value 
is possible now. Both are appended to the end of the message to 
be secured. A recipient of this message can also use the 
AuthTLV to identify the matching SA and thus calculate and 
check the ICV. 

B. Comparison to GDOI 
Both the NTS-based key management and the GDOI-based 

approach realize the Immediate Security Processing of messages 
and allow the administration of groups. 

In our approach we aim for a solution that is easy to 
implement and easy to employ. The NTS-KM has a very simple 
structure and uses TLSv1.3 as phase one protocol. TLS libraries 
(e.g. OpenSSL or WolfSSL) are widely available and mostly 
easy to apply. The GroupRequest/GroupResponse messages are 
quickly implemented as well and do not require special 
decoders. The functional range is kept lean and offers periodic 
parameter updates and group control/modifications. The KM 
message exchange takes place exclusively via unicast messages 

PTP nodesecured PTP 
network
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TLS-secured 
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Fig. 2. A PTP node joins a secured PTP network after SP/SA exchange  



and always starts from the PTP node. The configuration of the 
groups can be determined both by the PTP node and the KM 
server. Furthermore, the NTS-KM can also be used to secure 
NTP messages in order to establish additional redundancies 
(Prong C). In addition, NTS-secured NTP can be combined with 
the Watchdog principle described in [9] to detect delay attacks 
in multicast connections and provide a monitoring mechanism 
(Prong D). This controls the secured PTP protocol and executes 
the NTS-secured NTP Watchdog protocol only when necessary. 

 It is obvious that using an extended NTS key management 
for PTPv2.1 is an uncomplicated, but reliable solution to provide 
the necessary keys for secured PTP communication. 

GDOI, on the other hand, is strongly oriented towards  
IPsec and, due to the protocol design, can only be used  
with modifications in PTPv2.1. Similar to NTS-KM, GDOI also  
requires a phase one protocol in order to transmit messages 
securely. Here, the use of the Internet Security Association and 
Key Management Protocol (ISAKMP) [23] or the Internet Key 
Exchange Protocol Version 2 (IKEv2) [21] is defined. But for 
GDOI, ISAKMP as well as IKEv2 free libraries are rarely 
available. Parameter and group adjustments can be performed 
immediately (using the GROUPKEY-PUSH protocol) and do 
not require a cyclic update process. The transmission of these 
data is usually done by multicast and thus initiated by the GDOI 
key management server. Group forming is not a part of GDOI. 

V. SECURITY CONSIDERATIONS 
This chapter focuses on the aspects of authentication using 

certificates, data exchange with the NTS-KM and the secure 
PTP communication. 

A. Certificates and Trusted Anchor 
The authentication is mainly based on certificates issued by 

a trusted Certificate Authority (CA) that are utilized during the 
TLS handshake. In classical TLS applications only servers are 
required to have them. With our approach, the PTP nodes also 
need certificates to allow only authorized and trusted devices to 
get the group key and join a secure PTP network (see also VI.A). 
The verification of a certificate always requires a loose time 
synchronicity, because they have a validity period. This, 
however, reveals the well-known chicken-and-egg problem, 
since secure time transfer itself requires valid certificates. 
Furthermore, some kind of Public Key Infrastructure (PKI) is 
necessary, which is conceivable via the Online Certificate Status 
Protocol (OCSP) as well as offline via root CA certificates.  

B. Key Management Server 
The NTS-KM server primarily uses the security features 

provided by TLSv1.3. These include authenticity, message 
integrity and confidentiality during data transmission. 
Moreover, the protocol offers protection against common 
attacks such as spoofing, packet manipulation and replay. Since 
the NTS Key Establishment protocol only allows a TLSv1.3 
handshake or higher, downgrade attacks to TLSv1.2 or lower 
can be ruled out. However, note that a DoS attack on the key 
management server can prevent new connections or parameter 
updates for secure PTP communication. A hijacked key 
management server is also critical, because it can completely 
disable the protection mechanism. A redundant implementation 

of the key management server is therefore essential for a robust 
system. A further mitigation can be the limitation of the number 
of TLS requests of single PTP nodes to prevent flooding. These 
rules depend on the specific PTP use case. 

C. Secured PTP Communication 
Special requirements apply for secured time transmission in 

general, which are described in RFC 7384 [24]. The protection 
of PTP messages by an AuthTLV in combination with the NTS-
KM approach provides authenticity, message integrity and key 
freshness. It also provides protection against external Man-in-
the-Middle attacks such as spoofing, packet manipulation, 
replay attack and rogue master attack. No encryption of the 
messages takes place, as this is not seen necessary for time 
information. Based on the approach of Immediate Security 
Processing, common group keys are used, which limits the 
source authenticity. Hence, everyone in the group is able to 
change the messages. A hijacked PTP node or the break of the 
group key is therefore the greatest threat.  

This approach offers no protection against grandmaster time 
source attacks as well as packet interception and removal. For 
this reason, additional security mechanisms (Prong C and Prong 
D) need to be considered. 

VI. KEY MANAGEMENT FOR PTP – DETAILS 
This chapter extends Section IV and delves into the details 

of the GroupRequest and GroupResponse messages. This 
section also describes the necessary configurations on the PTP 
node and NTS-KE server side. 

A. Requirements and Pre-Configuration 
Before secure PTP communication is feasible, both the PTP 

nodes and the KM server must be set up. Therefore, both sides 
must be equipped with a private key and a certificate in advance. 
The certificate contains a digital signature of the CA as well as 
the public key of the sender. The key pair is required to establish 
an authenticated and encrypted channel for the initial TLS phase. 
Distribution and update of the certificates can be done manually 
or automatically. However, it is important that they are issued by 
a trusted CA instance, which can be either local (private CA) or 
external (public CA).  

The configuration of the PTP nodes is limited to specifying 
the Port and IP address (or host name) of the KM server and the 
group assignment. This can be linked to both the PTP domain 
and the sdoId (optional). The KM server can also define groups, 
limit the number of members, or specifically exclude individual 
participants. One possible way of forming groups is to use a 
X.509 certificate in which group names are used as part of the 
Subject name. In addition, the KM server defines how often the 
security parameters (SP and SA) will be updated and which PTP 
messages are to be protected with which SA. 

B. Phase 1: NTS Key Establishment Protocol 
The following sections describe the structure of the messages 

defined here and the function of the individual parameters 
derived from the PTPv2.1 specification. 

1) Stage 1: TLSv1.3-Handshake: The communication starts 
at the PTP node by establishing a TLSv1.3 connection to the key 
management server. Both parties authenticate each other based 



on the certificates and the KM server checks whether the  
PTP node is authorized to access the secure PTP network. 
According to the NTS specification, the ALPN extension 
"ntske/1" [7, ch. 4] must be used to signal the following NTS 
Key Establishment protocol. 

2) Stage 2: The GroupRequest Message: After a successful 
handshake, the PTP node sends a GroupRequest message  
over the encrypted TLS channel. This is a sequence of 
Records, which have a TLV-like format (see Figure 3). Records 
contain a Critical Bit (C) that rules the handling of unknown 
Types [7, ch. 4]. 

A GroupRequest message contains four Records (see  
Figure 4). The message starts with the NTS Next Protocol 
Negotiation [7, ch. 4.1.2], which signals the use of "PTPv2.1" as 
the following time protocol. The Records SdoId Request and 
PTP Domain Request allow the PTP node to make a request to 
join a desired group. The sdoId is the composition of the 
majorSdoId and the minorSdoId [3]. Then the End of Message 
Record signals the end of the GroupRequest. 

3) Stage 3: The GroupResponse Message: After receiving 
the GroupRequest, the key management server first checks the 
NTS Next Protocol Negotiation Record, which must contain the 
identifier for "PTPv2.1". Then a GroupResponse message with 
a dynamic number of Records is constructed (see Figure 5). 

The message also starts with the NTS Next Protocol 
Negotiation that confirms "PTPv2.1". This is followed by the 
Group Access Indicator which grants or denies the access to the 
desired group. If the access is prohibited, only an End of 
Message follows. The Security Policy determines which PTP 
message types in the confirmed group are to be secured with 
which Security Association. The Security Association contains 
information on how the PTP messages are to be secured and 
comprises all the parameters required to build or check an 
AuthTLV. If the SP specifies that the PTP message types are to 
be secured differently, several SA Records are included. The 
server generates the SPs and SAs upfront in cyclical intervals 
and stores them in its databases (SPD, SAD). SAs that have 
expired or are no longer used by any PTP peer can thus be 
deleted. Before we will explain the Records Security Parameter 
Validity Period as well as Security Parameter Update Time, the 
content of an SA will be detailed. Its composition follows a fixed 
structure (see Figure 6), which is based on the parameters 
specified in [3, ch. 16.14.2] and is supplemented by a KeyID. 
Due to the immediate-verification approach described here, 
some fields contain fixed values.  

Thus, immediateSecurity must always take the value TRUE, 
sequenceNoLength and resLength the value zero. The Security 
Parameter Pointer (SPP) and keyId are unique identifiers and are 
controlled by the key management server. Other parameters such 
as seqenceID window, KeyLength, IntegrityAlgTyp and 
icvLength are defined by the administrator in the KM server as 
part of the security policies. KeyLength and icvLength are also 
dependent on the IntegrityAlgTyp. HMAC-SHA256-128 is used 
as the IntegrityAlgTyp, since it must be supported by all PTP 
nodes. The MAC algorithm is stored as an Object Identifier 
(OID) with dot notation in IntegrityAlgTyp. In order to be able 
to parse this field, the additional field IntegrityAlgTypLength 
was added, which specifies the variable number of I octets in 
IntegrityAlgTyp. The symmetric key is a cryptographically 
secure random number and is used for the ICV calculation. 

Another Record in the GroupResponse message is the 
Security Parameter Validity Period, which specifies the validity 
period of all parameters (SP and SA) contained in the message. 
This includes the time data NotBefore and NotAfter in a Unix 
timestamp format. Another Record is Security Parameter 
Update Time, in which the KM server specifies the point in time 
at which new security parameters are available. This time must 
lie within the current validity period. Both records together allow 
a cyclical update of the Security Policy, the Security Association 
and the group constellation. The update interval is determined 
by the key management server and can be configured by the 
administrator. 

NTS Next Protocol Negotiation
SdoId Request

PTP Domain Request
End of Message  

Fig. 4. A GroupRequest message: sequence of four Records 

NTS Next Protocol Negotiation
Group Access Indicator

Security Policy
Security Association

[Security Association]
Security Parameter Validity Period
Security Parameter Update Time

Next Security Policy
Next Security Association

[Next Security Association]
Next Security Parameter Validity Period
Next Security Parameter Update Time

End of Message

Next Group Access Indicator

 
Fig. 5. A GroupResponse message: sequence of multiple Records (green 

fields only available during the Update Time period) 

 

Record Body
Body LengthRecord TypeC

 
Fig. 3. Structure of an NTS Record 

Field Octets Offset

immediateSecurity 1 1
SPP 1 0

sequenceNoLength 2 2
resLength 2 4

sequenceIdWindow 2 6
              integrityAlgTypeLength (I bytes) 2 8

integrityAlgType I 10
icvLength 2 10 + I

keyId 4 12 + I
                          keyLength          (K bytes) 2 16 + I

key K 18 + I  
Fig. 6. Structure of the Security Association Record body 



When the beginning of the time in Security Parameter 
Update Time is reached, all GroupResponse messages add 
further Records, which contain the new parameters for the 
following validity period. To simplify matters, these have been 
marked with the prefix "Next" (green fields in Figure 5) and are 
structurally identical to the "current" Records. If a group 
member is excluded in the following period, new security 
parameters are not included in the response and the Next Group 
Access Indicator Record contains a deny. More details about the 
updating process will be described below in chapter VI.D.1. 

After sending the GroupResponse message, the server closes 
the TLS channel correctly by sending a close notify to the PTP 
node. The PTP nodes store the parameters in the local SP and 
SA databases after receiving and checking the GroupResponse 
message. Now the PTP node is able to build the 
AUTHENTICATION TLVs for the respective PTP group as 
well as to generate and check the ICVs. The negotiation of the 
parameters is now complete.  

C. Phase 2: Securing PTP Messages 
In this phase the PTP nodes are able to verify or create 

secured messages within an assigned PTP group. The procedure 
for protecting and checking PTP messages is described  
as follows. 

1) Protection of PTP Messages: The securing process of the 
message to be sent starts with the interpretation of its Policy 
Limiting Fields (see Figure 7). These are in particular: 
sourcePortIdentity, domainNumber, majorSdoId, minorSdoId as 
well as messageType and are already present in the header of the 
PTP message. Depending on the PTP implementation, this 
information can also be provided elsewhere. The PLF are then 
used to determine the associated SP in the Security Policy 
Database (SPD), since a device with multiple ports can also have 
multiple SPs. Based on the security policy the decision is made 
whether the message type is to be secured. If so, the SP contains 
a Security Parameter Pointer (SPP), which can then be used to 
determine the corresponding SA in the Security Association 
Database (SAD). The information contained in the SA enables 
the PTP node to construct the AUTHENTICATION TLV [3, ch. 
16.14.3]. Due to the Immediate Security Processing used here, 
most fields contain fixed values (see Figure 8). 

The tlvType must be of the type "AUTHENTICATION" and 
has the value 0x8009 [3, ch. 14.1.1]. The lengthField specifies 
the payload length of the TLV excluding tlvType and 
lengthField. Since no optional fields are included in Immediate 
Security Processing and HMAC-SHA256-128 is used in this 
approach, the value of the lengthField is always 22 octets 
(1+1+4+16). The SPP corresponds to the value from the SP and 
enables the receiver to assign the associated SA. The 
secParamIndicator is a tuple of Boolean values and signals the 
presence of optional fields. Since these are not required, this is 
equivalent to the value 0. The keyID identifies the applied key of 
the used SA. Since this approach defines only one key per SA, 
the value is constant over the SA lifetime. Finally, the ICV is the 
checksum calculated over the complete PTP message, which 
depends on the HMAC algorithm and the key used. With the 
insertion of the AuthTLV at the end of the PTP message 
including the ICV, the message is considered secured and can be 
transmitted. 

2) Verification of PTP Messages: To verify a PTP message, 
the recipient must also read the PLF and thus identify the SP in 
his SPD (see Figure 9). If the received message is secured 
according to the SP, it is checked whether an AuthTLV is present 
at the end of the PTP message. Subsequently the SPP is read 
from it and the corresponding SA is determined from the SAD. 

Field Offset ValueOctets
tlvType 0 0x80092

lengthField 2 0x162
SPP 4 <var>1

keyID 6 <var>4
[disclosed Key] 10 0x0D
[sequenceNo] 10+D 0x0S

[RES] 10+D+S 0x0R
ICV 10+D+S+R <var>K

secParameterIndicator 5 0x01

 
Fig. 8. Structure of an AUTHENTICATION TLV with unused fields (gray) 

Read PLF from PTP header

Identify and read SP
Must this message have been secured?

Read SA

Discard PTP 
message

AuthTLV present?

Read AuthTLV from PTP message
(identify SA by SPP)

Recalculate ICV
Calculated ICV = PTP messsage ICV?

Verify AuthTLV
Do the flags meet the expectations?

yes

yes

Process PTP 
message

yes
no

no

no

no

yes

PTP message received

Process PTP 
message

 
Fig. 9. Message verification process 

Read PLF of the message

Identify and read SP
Must this message be secured?

Identify and read SA

Construct and embed AuthTLV

Calculate and embed ICV

Send unsecured 
PTP message

Send secured 
PTP message

yes

no

PTP message to be sent

 
Fig. 7. PTP securing process 



Then the PTP node checks whether the SequenceID in the PTP 
header meets the expectations and lies within the SequenceID 
window defined in the SA to prevent packet replay. If the 
remaining parameters in the AuthTLV match the data in the SA 
(e.g. various flags), the integrity check is initiated. Together with 
the parameters from the SA, the PTP node generates an ICV over 
the PTP message and compares it to the ICV in the AuthTLV. If 
both are identical, the authenticity of the message is confirmed 
and can be further processed by the PTP stack.  

D. Features and Limitations 
This section explains the functionality and properties of 

security parameter rotation and considers the challenges in 
unicast connections. 

1) Rotation of the Security Parameters: The rotation 
mechanism is an important part of this approach. It enables both 
the updating of security policies and security parameters (e.g. the 
key), as well as an easy way of group control. Thus, this method 
ensures key freshness without interruption of a running and 
secured PTP communication. The two parameters Validity 
Period and Update Time, which are transmitted as part of a 
GroupResponse, form the core of this mechanism. To prevent a 
potential attack on this method, a loosely time synchronous NTS 
key management server is mandatory. The time synchronization 
of the NTS-KM server should be both redundant and secure (e.g. 
with NTS-secured NTP).  

Figure 10 shows a possible example where a six-hour 
rotation has been set by the administrator on the NTS-KM 
server. Of course any other key exchange frequency is 
conceivable as well. The validity period of the parameters 
received in the GroupResponse starts at 0:00 and ends at 6:00 of 
the current day (left blue period). These points in time are stored 
as Unix timestamps and are shown here in simplified form. If 
this time range refers to the currently used security parameters, 
the current time of the PTP node must also lie within this area. 
In this example, the update time parameter is set to 5:00. PTP 
nodes that are already in the secured PTP network send a 
GroupRequest at a random time after the update time (5:00) has 
been reached and before the current parameters have expired 
(6:00) in order to obtain the new parameters. This prevents load 
peaks on the key management server caused by simultaneous 
requests from the PTP nodes upon expiration of the parameters. 
This mechanism also ensures that all PTP nodes have already 
received the new parameters when the current parameters expire 
and can continue operating without interruption (right green 
period). Expired parameters are then deleted after a defined 
bridging time (e.g. 10 seconds). The bridging time ensures that 
PTP packets that were generated and sent during the rotation can 
still be checked.  

The simple approach also has its limitations. An immediate 
group adjustment (e.g. the exclusion of a PTP node) or update of 
the security parameters is currently not possible. By establishing 
the TLS connection to query the parameters, the resulting traffic 
linearly (O(n)) increases in relation to the number of secured 
PTP nodes. But due to the moderate size of typical PTP networks 
and the low request frequency of the PTP nodes to the NTS-KM 
server, the load is insignificant. An extension with the function 
of an immediate update requires another connection between 
PTP node and KM server. Since in this scenario the data transfer 
originates from the KM server, a PTP node would have to listen 
permanently on a defined UDP port or a multicast address. One 
solution would be comparable to GDOI and the GROUPKEY-
PUSH method [10, ch. 4] defined in it. 

2) Challenges in Unicast Communication: Since the 
automatic key management system presented above has been 
coupled with immediate security processing and is therefore 
group-based, it is particularly suitable for multicast connections. 
Using of the KM system for securing unicast connections is 
possible in principle, but involves further challenges. To create 
such a unicast connection, a group with only two participants 
(master and slave) may be formed. However, there are 
restrictions if Transparent Clocks lie within this path. These 
must also be added to the "Unicast" group if support for 
correction fields is required. It becomes more difficult if there 
are other PTP devices (e.g. Boundary Clocks) between Grand 
master and slave. The security and authenticity of the time 
information thus strongly depends on the topology of the PTP 
network and its participants. If one pursues complete end-to-end 
security, this may not be solvable in any case with the procedure 
introduced here. One possible approach in those situations is the 
TESLA protocol, which can be used as a supplement, but 
increases the complexity considerably (see also Section III.B).  

There are basically two important challenges with unicast 
connections: source authentication and scalability. High source 
authenticity is achievable by establishing an exclusive and 
secure connection between master and slave. Apart from these 
two PTP nodes, the key required for this should only be known 
to the NTS-KM that establishes this connection. The support of 
Transparent Clocks, which also require the key for this purpose, 
remains problematic. A possible approach here is topology 
recognition by the NTS-KM, which determines the paths 
between slave and master and determines the TCs. 

To achieve good scalability, the unicast approach requires 
dynamic grouping (for TC support) or pairing between two PTP 
nodes. A reasonable method for key distribution is a ticket 
system. The very simplified process could look like this: A 
master registers once with the NTS-KM via TLS and receives a 
symmetric key KM-KE that only both of them know. A slave that 
wishes a unicast connection to the master informs the NTS-KM 
via a UnicastRequest over the TLS channel and receives a 
UnicastResponse including a ticket in addition to the unique 
master-slave key KM-S. This ticket is encrypted with KM-KE and 
contains the KM-S as well as other security parameters. The slave 
can now generate a PTP message (e.g. Sync_Request), which is 
secured with KM-S and contains the embedded ticket. The master 
is able to decrypt this ticket with KM-KE and subsequently verify 
the PTP message with KM-S. Of course, the master is also able to 
generate secured PTP messages with this key. The advantage of 

Validity Period
(next parameters)

Validity Period
(current parameters)

00:00 05:00 05:59 06:00 11:00 11:59

Request and receive new parameters at a 
random point in time within the update period

Validity Period:
Update Time:

00:00 - 05:59
05:00  

Fig. 10. Example of a security parameter rotation process (the green box shows  
the Validity Period of the upcoming parameters) 



this approach is that the tickets do not require a TLS connection 
from the KM server (but only from the PTP nodes) to distribute 
the keys. Obviously, other aspects like replay protection and 
topology changes in the PTP network have to be considered in 
this proposal. The detailed elaboration of the NTS-based key 
distribution for PTP unicast connection is still necessary and 
therefore not part of this paper. 

VII. PROOF-OF-CONCEPT IMPLEMENTATION 
The following section describes the characteristics and first 

results of a PoC-implementation [25]. This is followed by a brief 
examination as well as a performance test of the HMAC and 
CMAC algorithm.  

1) Protocol Implementation and Results: As part of the 
concept development, we started the creation of a first minimal 
implementation of the key management system. Currently, the 
PoC-implementation developed for Linux allows the 
authentication and negotiation of parameters between a PTP 
node and the KM server. The software is written in C++17 and 
also uses the OpenSSL 1.1.1g and Asio C++ libraries to provide 
the TLS functionality and other cryptographic operations. Initial 
testing confirms the basic functionality of the negotiation and the 
automatic update of security parameters. Actually, the PoC 
implementation is not linked to a PTP implementation and 
therefore still simulates the PTP instances. An integration of the 
PoC in the previous work from [19] (Linux PTP) or [20] (PTPd) 
would be useful and enable further practice-oriented analyses. 
While the size of a GroupRequest is constant at 21 octets, the 
data amount of the GroupResponse varies depending on the 
security policies defined. If the GroupResponse only contains 
one SA at a time, the size of this message is 115 octets. If it also 
contains the parameters for the following validity period, the 
message grows to 215 octets. When each PTP message type is 
protected by its own SA, then 10 SAs are sent for a validity 
period. Therefore, the GroupRequest can reach a maximum size 
of 1223 octets. According to initial measurements, the 
generation time of a typical GroupResponse (with one SA) on a 
desktop PC (Intel i9-9900K) takes around 0.3µs, but strongly 
depends on the implementation and hardware performance and 
must be investigated further.  

2) Comparison of HMAC and CMAC: The high accuracy in 
PTP is especially due to the exact capture of the transmit and 
receive timestamps. PTP defines the transmit timestamp as the 
transmission start of the first symbol after the Start of Frame 
Delimiter (SFD) of an Ethernet frame. The transmission of this 
timestamp by PTP can be done in one-step or two-step mode, 
depending on the configuration and hardware support. In two-
step mode, a Follow-up message transfers the transmit 
timestamp and is therefore not time critical. In one-step mode, 
on the other hand, this timestamp is written into the PTP message 
while the sending process of this message is already taking 
place. Depending on the transmission speed of the network 
interface, only a few microseconds remain for this operation. It 
becomes even more difficult if the PTP packet is to be 
additionally secured by an ICV. The ability to do this depends 
primarily on the amount of data to be secured, the MAC 
algorithm and the hardware performance. 

A secured PTP packet typically consists of a PTP header, a 
PTP body and an AuthTLV. The header has a constant length of 
34 octets, the body 10 to 30 octets, depending on the message 
type, and the AuthTLV constant 26 octets (including 16 octets 
for the ICV). Therefore, 54 to 74 octets per PTP packet (ICV 
excluded) must be secured by the MAC algorithm. The 
maximum time allowed for the securing process also depends on 
the total length of the data to be sent. If PTP uses pure Ethernet 
(802.3) as the network protocol (the PTP packet is embedded as 
an Ethernet payload), there are an additional 14 octets of the 
Ethernet header between the SFD and the ICV. This results in a 
total length between SFD and ICV of 68 to 88 octets. In order to 
support the one-step mode, the timestamp must be written to the 
PTP packet during the transmission of these data quantities and 
the ICV must be calculated and embedded. At an Ethernet 
transmission speed of 100 Mbit/s, this results in 5.44µs to 
7.04µs. If PTP uses IPv4 and UDP as network protocols instead, 
an additional 28 octets (IPv4 header: 20 octets; UDP header: 8 
octets) are transmitted. For this total length of 96 to 116 octets, 
this leads to a transmission time of 7.68µs to 9.28µs. However, 
this problem becomes even more critical at higher transmission 
speeds (1 GBit/s or higher). 

The PTPv2.1 standard recommends the use of HMAC-
SHA256-128 [3, ch. 16.14.3.9] for the securing process. 
However, an analysis in [5, ch. IV] showed that this algorithm is 
not optimal due to the long block size of 512 bits and that AES-
128-CBC-CMAC is a much better alternative. Thus, a 
performance test was executed on two different devices, in 
which an increasing amount of random data was secured by a 
MAC algorithm. The allocation and freeing of memory was 
excluded in these measurements. Figure 11 shows the results on 
a Meinberg microSync RX. Even without hardware-supported 
AES acceleration, CMAC (fine-staged green line) is superior to 

 
Fig. 12. Comparison of computing time for CMAC and HMAC (desktop PC) 

 
Fig. 11. Comparison of computing time for CMAC and HMAC (microSync) 



the HMAC (course-staged blue line) algorithm. The visible 
gradations result from the block size of the respective algorithm. 
On the microSync, CMAC needs 6.22µs for 54 octets and 
HMAC 9.04µs. For 74 octets accordingly 6.87µs and 10.46µs. 
As an additional comparison, Figure 12 shows the process on a 
desktop PC with an Intel i9-9900K processor and active AES 
acceleration. For both measurements, the library OpenSSL 
1.1.1g was used as well. The CMAC (lower green line) 
algorithm shows significantly better results than HMAC (upper 
blue line) and should therefore be included in a future version  
of the PTP standard. A purely software-based solution (without 
AES acceleration) cannot meet the timing requirements. A 
hardware-specialized implementation of the MAC algorithms 
(e.g. in FPGAs) can further reduce the latency and thus  
enable one-step mode in PTP even with transmission speeds of 
1 Gbit/s and above.  

VIII. CONCLUSION AND FURTHER WORK 
The concept presented and the results of the PoC 

implementation illustrate the easy realization of an automatic 
key management system for PTPv2.1 based on the NTS key 
exchange. In conjunction with the PTP integrated security 
mechanism (Prong A), this allows immediate security 
processing of PTP messages. Moreover, the NTS-KM offers the 
additional use of NTS-secured NTP, which can be used to 
increase the redundancy of the PTP network. The examination 
of the securing duration of PTP messages on industrial hardware 
also showed that CMAC is more suitable than HMAC, which is 
especially important in one-step mode. 

Further work is concentrating on the optimization and 
expandability of this concept by additional functions. This can 
be e.g. an instant parameter update method in case of a detected 
attack or the usage of Key Tables in each SA, to support multiple 
keys per rotation period. Another aspect is the addition of the 
Delayed Security Processing or the usage of secured unicast 
connections, by extending this approach with a UnicastRequest 
and UnicastResponse. The focus here lies on providing  
strong source authentication in combination with Immediate 
Security Processing.  
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