

The following article is the final version submitted to IEEE after peer review; hosted by Ostfalia

University of Applied Sciences. It is provided for personal use only.

A Network Time Security Based Automatic Key Management for

PTPv2.1

Martin Langer, Kai Heine, Dieter Sibold and Rainer Bermbach

© 2020 IEEE. This is the author’s version of an article that has been published by IEEE.

Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

Full Citation of the original article published by IEEE:

M. Langer, K. Heine, D. Sibold and R. Bermbach, "A Network Time Security Based Automatic Key

Management for PTPv2.1," 2020 IEEE 45th Conference on Local Computer Networks (LCN), Sydney,

Australia, 2020, pp. 144-153, doi: 10.1109/LCN48667.2020.9314809.

Available at:

https://doi.org/10.1109/LCN48667.2020.9314809

A Network Time Security Based
Automatic Key Management for PTPv2.1

Martin Langer
Ostfalia University of

Applied Sciences
Wolfenbüttel, Germany
mart.langer@ostfalia.de

Kai Heine
Ostfalia University of

Applied Sciences
Wolfenbüttel, Germany

ka.heine@ostfalia.de

Dieter Sibold
Physikalisch-Technische

Bundesanstalt
Braunschweig, Germany

dieter.sibold@ptb.de

Rainer Bermbach
Ostfalia University of

Applied Sciences
Wolfenbüttel, Germany
r.bermbach@ostfalia.de

Abstract—The PTPv2.1 standard provides new protection
mechanisms to ensure the authenticity and integrity of PTP
messages. However, the distribution of the necessary security
parameters is not part of the specification. This paper proposes a
simple and practical approach for the automated distribution of
these parameters by using a key management system that enables
the Immediate Security Processing in PTP. It is based on the
Network Time Security protocol and offers functions for group
management, parameter updating and monitoring mechanisms. A
Proof-of-Concept implementation provides initial results of the
resources required for the key management system and its use.

Keywords—IEEE 1588, PTPv2.1, NTS, Key Management

I. INTRODUCTION
In many areas, exact time synchronization of devices is

important for a correct operation. However, areas such as the
financial sector, telecommunications or electrical power
distribution depend on accuracies that only the Precision Time
Protocol (PTP) can provide. It uses packet-based networks and
achieves synchronization accuracies in the nanosecond range.
The first version of PTP was released in 2002 [1] and was
revised in 2008 as PTPv2 [2]. The current PTP version 2.1 [3],
which is backwards compatible to PTPv2 and offers several
functional enhancements.

For a long time, little attention was paid to the protection of
time information. The Annex K of PTPv2 [2] described an
experimental approach to the protection of PTP messages for the
first time. But this was not applied in practice, also because of
depicted weaknesses in the protocol flow in later analyses [4] [5]
[6]. To acknowledge the increased demand on secured time
transfer, the specification of the new PTP version 2.1
incorporates a normative Type-Length-Value (TLV) extension
for authentication, which protects the integrity and authenticity
of PTP packets. Nevertheless, PTPv2.1 does not specify the
necessary key distribution mechanism and only suggests
possible approaches in its new Annex P (see Chapter II). These
proposals base upon existing key distribution protocols, which
are not designed for PTP and therefore need to be modified or
extended. Thus, no straightforward solution for the realization of
such a key management system exists.

To address this gap, this paper proposes a simply kept
automatic key management (KM) for PTP version 2.1 based on
the Network Time Security Protocol (NTS) [7]. NTS is designed

for securing time protocols such as the Network Time Protocol
(NTP) [8]. Due to the development work on NTS back then, it
was not yet considered in the current PTP standard as a possible
key management method. The concept presented here extends
the NTS protocol in such a way that it can also be used for key
distribution in PTP networks. Thus, secure PTP connections as
well as secure NTP connections (e.g. as a so-called watchdog
mechanism for PTP [9]) are realizable using a common key
management system.

Similar to the Group Domain of Interpretation protocol
(GDOI) [10] – one of the approaches suggested in Annex P –
our proposal uses a basic group management to secure PTP
multicast connections. It supports a simple group control, offers
a cyclic update of security parameters and works with the
PTPv2.1 concept of Immediate Security Processing (see II.A.1).
Since our approach is directly oriented towards PTP, the
protocol design does not contain any unnecessary complexities
and is easy to implement. This is an advantage in comparison to
GDOI, which is aligned to IPsec and cannot be used directly for
PTP. As with GDOI, our NTS-based multicast approach also has
limitations for PTP unicast connections (e.g. scalability), which
are discussed in this paper.

In the further course of this paper, Chapter II presents basic
information about PTP security and the operation of the Network
Time Security protocol. Subsequently, Chapter III provides a
brief history of the progress of PTP security and the related
work. Chapter IV describes the proposed key management in a
short form, explains the basic functions and compares the
approach with GDOI. The security considerations are then
discussed in Chapter V. The following Chapter VI depicts
the automatic key management in detail and describes some
specific features of the method. The results of a first Proof-of-
Concept (PoC) implementation as well as the performance
comparison of the feasible MAC algorithms are shown in
Chapter VII. The conclusion and the further course of action are
finally discussed in Chapter VIII.

II. PRELIMINARIES
This chapter explains the most important security aspects

of the current PTP version 2.1 and gives an overview of the
functionality of the Network Time Security protocol.

A. New PTP Security Mechanisms
The security concepts in Precision Time Protocol v2.1 are

separated into four so-called Prongs [3], which can be applied
individually or together to protect the PTP messages and the
PTP network.

1) Prong A: Integrated Security Mechanism: Prong A
describes a built-in mechanism of PTP to ensure the authenticity
and integrity of the PTPv2.1 messages. This mechanism consists
of three components: key management, security processing
method and AUTHENTICATION TLV.

The AUTHENTICATION TLV (AuthTLV) is usually
located at the end of a PTP message and contains various
security parameters as well as an Integrity Check Value (ICV).
Together with the Security Policies (SP), the contained security
parameters allow a recipient to identify the so-called Security
Association (SA). The SA contains all necessary information to
construct the AuthTLV and recalculate the ICV. The ICV is
generated over the entire PTP message including the AuthTLV
omitting the ICV field. If several protection mechanisms are
used simultaneously, multiple AuthTLVs can also be present in
a PTP-message.

The protection mechanisms are distinguished into Immediate
Security Processing and Delayed Security Processing. With the
immediate variant, the necessary security parameters and keys
are transmitted upfront, before the secure PTP communication
takes place. This allows all devices that know these parameters
to immediately check incoming PTP messages. It also enables
Transparent Clocks (TC) to modify correction fields in the PTP
messages and protect them subsequently. PTPv2.1 proposes the
GDOI protocol as a key management system, which allows for
extended group control.

With the delayed variant, the key required for verifying the
messages is disclosed by the master a posteriori. In this method
the time is divided into intervals of fixed duration. All messages
that are transmitted in one of these time slots are secured with
the respective interval key. The disclosure of the key used takes
place in a later interval. The Timed Efficient Stream Loss-
Tolerant Authentication Protocol (TESLA) [11], which was
designed for securing broadcast messages, represents such a key
management system.

The choice of the security processing method is application-
specific and can be defined in PTP profiles. The protocols
suggested by PTPv2.1 for this purpose (GDOI and TESLA) are
recommendations and can be replaced by other methods as long
as they permit the construction of the AuthTLV. In general, the
PTPv2.1 specification allows the use of both manual and
automatic key management systems. In a manual KM system,
the security parameters are transferred to the PTP devices
upfront and are usually static. While this is feasible for small
PTP networks, it is not a solution for larger networks due to
scaling issues. In addition, the maintenance effort increases
when parameters and keys need to be updated. An automatic KM
system solves these problems and enables a much better
administration of the PTP network. However, PTPv2.1 does not
define a specific key management system nor the associated
communication or message structure.

2) Prong B: External Transport Security Mechanism:
Another security strategy is the use of external mechanisms like
MACsec [12] or IPsec [13]. Both approaches provide
authenticity and message integrity and optionally allow the
encryption of the higher protocol layers. MACsec works on
layer 2 of the Open Systems Interconnection (OSI) model and
also protects protocols such as the Address Resolution Protocol
(ARP) and the Dynamic Host Configuration Protocol (DHCP),
but is restricted to switches or end-to-end connections. IPsec
works on layer 3 and allows tunneling across networks, but due
to the protocol stack it cannot be used in conjunction with the
802.3 mode (Ethernet) in PTP.

3) Prong C: Architectural Mechanisms: This prong provides
guidance on how to protect a PTP network and provides
solutions to mitigate denial of service attacks (DoS) by
increasing the redundancy. This includes additional time sources
and Grandmaster Clocks as well as redundant network paths.

4) Prong D: Monitoring and Management: Another part is
monitoring the network to detect attacks or problems in the
infrastructure. This includes unexpected offset jumps or
large changes in peer-to-peer (P2P) measured PTP link delays.
The use of a watchdog mechanism [9] can prevent or mitigate
the consequences of such delay attacks.

B. Network Time Security (NTS)
Even the widely used Network Time Protocol (NTP) [8]

offered insufficient security mechanisms for a long time. One of
them is the older and still secure symmetric key approach, which
is unfortunately not scalable and therefore futile in typical NTP
use cases. Although this problem was subsequently solved with
the Autokey [14] method, an analysis in 2012 revealed other
serious design flaws of that procedure [15]. For this reason, the
Network Time Security (NTS) [7] protocol was developed to
provide the necessary security functions. NTS currently focuses
on NTP, but is designed in such a way that it can be extended to
other time protocols.

An NTS-secured communication generally consists of three
parts: The Transport Layer Security v1.3 (TLSv1.3) [16]
handshake, the parameter negotiation and the secured time
transmission. Together, TLS connection and parameter
negotiation form the NTS Key Establishment protocol (NTS-
KE) and can act as a key management system (blue boxes in
Figure 1). In the first phase (Phase 1.1), TLSv1.3 enables peer

Phase 1.1: NTS Key Establishment Protocol
setting up a TLS channel

Phase 1.2: NTS Key Establishment Protocol
exchange security parameters

Phase 2: Secured PTP Communication

se
cu

rit
y

pa
ra

m
et

er
s

ex
pi

re

Fig. 1. Phases in the establishment of a secured time transfer

authentication by certificates and provides authenticity, message
integrity and confidentiality of following data transmitted over
the TLS channel. The messages subsequently exchanged via
TLS (Phase 1.2) depend on the time protocol to be protected.
These always consist of a set of Records, which each contains
necessary information (e.g. protocol type, algorithms, IDs, ...).
Since PTP has different requirements than NTP, new Records
must be specified that follow the typical TLV Record structure
defined in NTS. Chapter VI describes in detail which existing
Records can be used for PTP and which new ones are
introduced. After transmission of these data the TLS channel is
closed and the secured time transfer begins.

 While the message exchange in the first phase of NTS
(Phase 1.1 and 1.2) is applicable to both NTP and PTPv2.1, the
second phase addresses the time protocol to be secured itself. In
NTP, extension fields are used to transfer encrypted security
parameters in the form of cookies between client and server.
These are used also to protect the NTP messages, which allows
the server to be stateless and ensures key freshness and
untraceability of the client. But this procedure is not useful for
PTP, since both the communication structure and the security
requirements differ. On the one hand, the cookie method is
not applicable to multicast connections, while on the other
hand tracking protection and statelessness are not required.
However, for PTPv2.1 the Prong A approach is a reasonable
solution. The PTP integrated security mechanism already
describes the general content and structure of the AuthTLV and
the NTS-KE protocol can provide the security parameters
needed. If the parameters expire during the protected time
transfer operation or other problems occur, the NTS-KE protocol
can be executed again.

III. RELATED WORK
This section provides a brief overview of the security

developments since the last PTP version 2.0 in 2008 and
addresses the advantages, as well as the limitations of current
solutions for PTPv2.1.

A. State of the Art
Since IEEE 1588-2008 (PTPv2) [2] the security aspect gains

more and more attention. Precision Time Protocol v2.1 already
provided a first experimental security mechanism, Annex K,
which offered source authentication, message integrity and
protection against replay attacks. However, Annex K was not
used in practice and showed some design flaws [4] [5] [6]. It
proposed a three-step authentication process with a challenge-
request-response mechanism used in the start-up phase.
This method works, but is inefficient and can be replaced by a
one-way authentication. Also, the sequence number may be too
short to effectively protect against replay attacks. Furthermore,
the distribution of keys is complex and could be improved.
Another point is the Keyed-Hash Message Authentication Code
(HMAC) that is used for message protection, which is rather
unsuitable in one-step mode where on-the-fly protection of
messages may be necessary.

Several publications followed, which presented suggestions
for improvement of Annex K and alternative key distribution
mechanisms like GDOI and TESLA. Naiara Moreira et al.

summarized these in their paper [4] and compared the
characteristics of the different approaches. In addition to these
methods for securing PTP messages, they also examined further
protection mechanisms such as MACsec and IPsec (Prong B) in
their paper. NTS was also a part of this investigation, which at
that time still included TESLA as an approach in its draft [17].
In the specification phase of PTPv2.1, these proposals led to an
update of the security measures now defined in the clause 16.14
and the new Annex P [3]. Clause 16.14 defines the normative
AUTHENTICATION TLV for securing PTP messages (Prong
A). Annex P describes in general terms the four prongs (see
Chapter II.A) and potential key management systems (Prong A:
GDOI and TESLA). The previous Annex K was thus obsolete
and therefore removed. A further approach followed from
Kemparaj and Kumar, who deals with the full encryption of PTP
messages [18] without an external key management system.
However, this approach was not further considered in the
PTPv2.1 specification. Also the current NTS protocol [7] was
not mentioned in PTPv2.1 as a possible key management system
due to its draft status at the time.

The functionality of clause 16.14 (Prong A: PTP Integrated
Security) has already been confirmed by two implementations.
Ezzeldin Shereen et al. present in [19] a Linux PTP
implementation that examines the two procedures Immediate
Security Processing and Delayed Security Processing
(unauthenticated). Dragos Maftei et al. present a PTPd-based
implementation [20], which also supports immediate and
delayed security processing. Both implementations use a manual
key management system instead of GDOI (immediate
processing) or TESLA (delayed processing).

B. Limitations of GDOI and TESLA
The application of GDOI [10] requires, like in the NTS-

based proposal, a phase-one protocol. Therefore, it uses the
Internet Key Exchange v2 (IKEv2) protocol [21], which is
standardized and available like GDOI. However, both are
designed for IPsec, which makes a direct use in PTPv2.1 difficult
and requires additional specification effort. GDOI’s advantage
lies among other things in the immediate integrity check of PTP
messages and the support of Transparent Clocks. However, the
disadvantage is the lower level of source authentication, because
every trusted member is able to modify the messages in his own
group. More details are discussed in chapter IV.B comparing
GDOI to our own NTS-based proposal.

On the other hand, TESLA offers a strong source
authentication to the master, so that group members cannot
change messages. However, the use of TESLA in a PTP context
is very difficult, because every PTP instance which could
become a master must be able to operate as a TESLA server.
Slaves are also burdened additionally, because the verification
of PTP messages is delayed and the PTP-messages have to
be stored temporarily. Furthermore, TESLA requires a phase-
one protocol for the bootstrapping mechanism (not defined) as
well as an already time-synchronous PTP node (in the seconds
range). It does not provide any group management functions and
does not support Transparent Clocks. Moreover, TESLA can be
broken with delay attacks in a short time [22] and needs a
secured watchdog mechanism [9] to prevent this.

IV. KEY MANAGEMENT FOR PTP – OVERVIEW
Our key management system combines the NTS-KE

protocol with the PTP Integrated Security Mechanism. It enables
the simple and fast integration of an automatic key management
system (NTS-KM) into PTP networks. Based on the Immediate
Security Processing of messages, this KM also allows the
formation of groups (e.g. based on PTP domains). These can be
formed by an administrator at the PTP nodes or on the KM server
side. Using a cyclic update process, security policies, keys, and
other parameters can be changed during operation without
interrupting the PTP communication. Moreover, the approach
enables simple group control, to exclude PTP nodes from a
group or assign them to other groups. In addition, the protocol
can be extended to include further functionalities.

The following section briefly describes the steps that a PTP
node must perform to establish a secured communication and
how the KM server works. Then the approach depicted here
is compared to a GDOI-based solution. For a more detailed
description of the KM procedure and configuration, also see
Section VI.

A. KM-Protocol Overview and Securing Process
The pre-configuration of the KM server and the PTP node is

the first step to secure the communication. Both sides require
certificates to check the authenticity of each other.

Any PTP node that wants to be part of a secured PTP
network first starts by establishing a TLSv1.3 connection to the
KM server (see Figure 2). The host name or the IP address of the
server is given to the PTP node in advance, e.g. by using a
configuration file. The TLS handshake authenticates the KM
server and authorizes the PTP node to join the secure PTP
network. In addition, all data transmitted via the TLS channel
are secured and encrypted.

The PTP node now sends a GroupRequest message over the
established TLS channel. This message simply consists of a
sequence of data blocks (so-called Records) in a Type-Length-

Value (TLV)-like format. Each block transfers specific
parameters and is easy to parse without special decoders. The
request sent by the PTP node contains the wish to join a specific
group or, if the authorization allows for it, multiple different
groups. The group selection is derived from the configured PTP
domain and sdoId of the PTP node. The domain permits the
separation of PTP network groups, while the sdoId enables the
distinction between PTP profiles. This prevents complications
when different profiles use the same PTP domain.

After reception of the GroupRequest the KM server first
checks whether joining the group is allowed or whether this was
prohibited by restrictions set by the administrator. The KM
server stores the decision in a GroupResponse message that is
structurally identical to the GroupRequest. If access is granted,
the security policies and security parameters of the group are
also included. Depending on the security policy requirements,
different security parameters (Security Associations) can be
used for different PTP messages. The message also contains
information about the validity period of these parameters and
when the PTP node can start to retrieve a new set of parameters
from the KM server. In addition, if new parameters are already
available for the following validity period, the KM server
embeds them in the GroupResponse, too. In this way, PTP nodes
can use the new parameters immediately after the expiration of
the current ones without interruption of the PTP communication.
After sending the GroupResponse message, the KM server also
ends the TLS connection correctly with a close notify message.
The communication with the KM server is thus completed and
the PTP node is able to join the secured PTP communication.

To protect or check a PTP message, the PTP node first reads
the Policy Limiting Fields (PLF) from the PTP header of the
respective message. Among other fields, these include the
domainNumber, the sourcePortID and the messageType. If a
PTP device manages different security policies (e.g. for different
ports), the PLF can be used to identify the correct SP. The SP
then provides information about which PTP messages are to be
secured. If a protection is required for the message type, the SP
can be used to identify the corresponding Security Association,
which specifies how the protection is to be performed. Using the
parameters contained in the SA, the construction of the
AuthTLV including the calculation of the Integrity Check Value
is possible now. Both are appended to the end of the message to
be secured. A recipient of this message can also use the
AuthTLV to identify the matching SA and thus calculate and
check the ICV.

B. Comparison to GDOI
Both the NTS-based key management and the GDOI-based

approach realize the Immediate Security Processing of messages
and allow the administration of groups.

In our approach we aim for a solution that is easy to
implement and easy to employ. The NTS-KM has a very simple
structure and uses TLSv1.3 as phase one protocol. TLS libraries
(e.g. OpenSSL or WolfSSL) are widely available and mostly
easy to apply. The GroupRequest/GroupResponse messages are
quickly implemented as well and do not require special
decoders. The functional range is kept lean and offers periodic
parameter updates and group control/modifications. The KM
message exchange takes place exclusively via unicast messages

PTP nodesecured PTP
network

NTS-KM server

TLS-secured
communication

GroupKey-
secured PTP

communication

Fig. 2. A PTP node joins a secured PTP network after SP/SA exchange

and always starts from the PTP node. The configuration of the
groups can be determined both by the PTP node and the KM
server. Furthermore, the NTS-KM can also be used to secure
NTP messages in order to establish additional redundancies
(Prong C). In addition, NTS-secured NTP can be combined with
the Watchdog principle described in [9] to detect delay attacks
in multicast connections and provide a monitoring mechanism
(Prong D). This controls the secured PTP protocol and executes
the NTS-secured NTP Watchdog protocol only when necessary.

 It is obvious that using an extended NTS key management
for PTPv2.1 is an uncomplicated, but reliable solution to provide
the necessary keys for secured PTP communication.

GDOI, on the other hand, is strongly oriented towards
IPsec and, due to the protocol design, can only be used
with modifications in PTPv2.1. Similar to NTS-KM, GDOI also
requires a phase one protocol in order to transmit messages
securely. Here, the use of the Internet Security Association and
Key Management Protocol (ISAKMP) [23] or the Internet Key
Exchange Protocol Version 2 (IKEv2) [21] is defined. But for
GDOI, ISAKMP as well as IKEv2 free libraries are rarely
available. Parameter and group adjustments can be performed
immediately (using the GROUPKEY-PUSH protocol) and do
not require a cyclic update process. The transmission of these
data is usually done by multicast and thus initiated by the GDOI
key management server. Group forming is not a part of GDOI.

V. SECURITY CONSIDERATIONS
This chapter focuses on the aspects of authentication using

certificates, data exchange with the NTS-KM and the secure
PTP communication.

A. Certificates and Trusted Anchor
The authentication is mainly based on certificates issued by

a trusted Certificate Authority (CA) that are utilized during the
TLS handshake. In classical TLS applications only servers are
required to have them. With our approach, the PTP nodes also
need certificates to allow only authorized and trusted devices to
get the group key and join a secure PTP network (see also VI.A).
The verification of a certificate always requires a loose time
synchronicity, because they have a validity period. This,
however, reveals the well-known chicken-and-egg problem,
since secure time transfer itself requires valid certificates.
Furthermore, some kind of Public Key Infrastructure (PKI) is
necessary, which is conceivable via the Online Certificate Status
Protocol (OCSP) as well as offline via root CA certificates.

B. Key Management Server
The NTS-KM server primarily uses the security features

provided by TLSv1.3. These include authenticity, message
integrity and confidentiality during data transmission.
Moreover, the protocol offers protection against common
attacks such as spoofing, packet manipulation and replay. Since
the NTS Key Establishment protocol only allows a TLSv1.3
handshake or higher, downgrade attacks to TLSv1.2 or lower
can be ruled out. However, note that a DoS attack on the key
management server can prevent new connections or parameter
updates for secure PTP communication. A hijacked key
management server is also critical, because it can completely
disable the protection mechanism. A redundant implementation

of the key management server is therefore essential for a robust
system. A further mitigation can be the limitation of the number
of TLS requests of single PTP nodes to prevent flooding. These
rules depend on the specific PTP use case.

C. Secured PTP Communication
Special requirements apply for secured time transmission in

general, which are described in RFC 7384 [24]. The protection
of PTP messages by an AuthTLV in combination with the NTS-
KM approach provides authenticity, message integrity and key
freshness. It also provides protection against external Man-in-
the-Middle attacks such as spoofing, packet manipulation,
replay attack and rogue master attack. No encryption of the
messages takes place, as this is not seen necessary for time
information. Based on the approach of Immediate Security
Processing, common group keys are used, which limits the
source authenticity. Hence, everyone in the group is able to
change the messages. A hijacked PTP node or the break of the
group key is therefore the greatest threat.

This approach offers no protection against grandmaster time
source attacks as well as packet interception and removal. For
this reason, additional security mechanisms (Prong C and Prong
D) need to be considered.

VI. KEY MANAGEMENT FOR PTP – DETAILS
This chapter extends Section IV and delves into the details

of the GroupRequest and GroupResponse messages. This
section also describes the necessary configurations on the PTP
node and NTS-KE server side.

A. Requirements and Pre-Configuration
Before secure PTP communication is feasible, both the PTP

nodes and the KM server must be set up. Therefore, both sides
must be equipped with a private key and a certificate in advance.
The certificate contains a digital signature of the CA as well as
the public key of the sender. The key pair is required to establish
an authenticated and encrypted channel for the initial TLS phase.
Distribution and update of the certificates can be done manually
or automatically. However, it is important that they are issued by
a trusted CA instance, which can be either local (private CA) or
external (public CA).

The configuration of the PTP nodes is limited to specifying
the Port and IP address (or host name) of the KM server and the
group assignment. This can be linked to both the PTP domain
and the sdoId (optional). The KM server can also define groups,
limit the number of members, or specifically exclude individual
participants. One possible way of forming groups is to use a
X.509 certificate in which group names are used as part of the
Subject name. In addition, the KM server defines how often the
security parameters (SP and SA) will be updated and which PTP
messages are to be protected with which SA.

B. Phase 1: NTS Key Establishment Protocol
The following sections describe the structure of the messages

defined here and the function of the individual parameters
derived from the PTPv2.1 specification.

1) Stage 1: TLSv1.3-Handshake: The communication starts
at the PTP node by establishing a TLSv1.3 connection to the key
management server. Both parties authenticate each other based

on the certificates and the KM server checks whether the
PTP node is authorized to access the secure PTP network.
According to the NTS specification, the ALPN extension
"ntske/1" [7, ch. 4] must be used to signal the following NTS
Key Establishment protocol.

2) Stage 2: The GroupRequest Message: After a successful
handshake, the PTP node sends a GroupRequest message
over the encrypted TLS channel. This is a sequence of
Records, which have a TLV-like format (see Figure 3). Records
contain a Critical Bit (C) that rules the handling of unknown
Types [7, ch. 4].

A GroupRequest message contains four Records (see
Figure 4). The message starts with the NTS Next Protocol
Negotiation [7, ch. 4.1.2], which signals the use of "PTPv2.1" as
the following time protocol. The Records SdoId Request and
PTP Domain Request allow the PTP node to make a request to
join a desired group. The sdoId is the composition of the
majorSdoId and the minorSdoId [3]. Then the End of Message
Record signals the end of the GroupRequest.

3) Stage 3: The GroupResponse Message: After receiving
the GroupRequest, the key management server first checks the
NTS Next Protocol Negotiation Record, which must contain the
identifier for "PTPv2.1". Then a GroupResponse message with
a dynamic number of Records is constructed (see Figure 5).

The message also starts with the NTS Next Protocol
Negotiation that confirms "PTPv2.1". This is followed by the
Group Access Indicator which grants or denies the access to the
desired group. If the access is prohibited, only an End of
Message follows. The Security Policy determines which PTP
message types in the confirmed group are to be secured with
which Security Association. The Security Association contains
information on how the PTP messages are to be secured and
comprises all the parameters required to build or check an
AuthTLV. If the SP specifies that the PTP message types are to
be secured differently, several SA Records are included. The
server generates the SPs and SAs upfront in cyclical intervals
and stores them in its databases (SPD, SAD). SAs that have
expired or are no longer used by any PTP peer can thus be
deleted. Before we will explain the Records Security Parameter
Validity Period as well as Security Parameter Update Time, the
content of an SA will be detailed. Its composition follows a fixed
structure (see Figure 6), which is based on the parameters
specified in [3, ch. 16.14.2] and is supplemented by a KeyID.
Due to the immediate-verification approach described here,
some fields contain fixed values.

Thus, immediateSecurity must always take the value TRUE,
sequenceNoLength and resLength the value zero. The Security
Parameter Pointer (SPP) and keyId are unique identifiers and are
controlled by the key management server. Other parameters such
as seqenceID window, KeyLength, IntegrityAlgTyp and
icvLength are defined by the administrator in the KM server as
part of the security policies. KeyLength and icvLength are also
dependent on the IntegrityAlgTyp. HMAC-SHA256-128 is used
as the IntegrityAlgTyp, since it must be supported by all PTP
nodes. The MAC algorithm is stored as an Object Identifier
(OID) with dot notation in IntegrityAlgTyp. In order to be able
to parse this field, the additional field IntegrityAlgTypLength
was added, which specifies the variable number of I octets in
IntegrityAlgTyp. The symmetric key is a cryptographically
secure random number and is used for the ICV calculation.

Another Record in the GroupResponse message is the
Security Parameter Validity Period, which specifies the validity
period of all parameters (SP and SA) contained in the message.
This includes the time data NotBefore and NotAfter in a Unix
timestamp format. Another Record is Security Parameter
Update Time, in which the KM server specifies the point in time
at which new security parameters are available. This time must
lie within the current validity period. Both records together allow
a cyclical update of the Security Policy, the Security Association
and the group constellation. The update interval is determined
by the key management server and can be configured by the
administrator.

NTS Next Protocol Negotiation
SdoId Request

PTP Domain Request
End of Message

Fig. 4. A GroupRequest message: sequence of four Records

NTS Next Protocol Negotiation
Group Access Indicator

Security Policy
Security Association

[Security Association]
Security Parameter Validity Period
Security Parameter Update Time

Next Security Policy
Next Security Association

[Next Security Association]
Next Security Parameter Validity Period
Next Security Parameter Update Time

End of Message

Next Group Access Indicator

Fig. 5. A GroupResponse message: sequence of multiple Records (green

fields only available during the Update Time period)

Record Body
Body LengthRecord TypeC

Fig. 3. Structure of an NTS Record

Field Octets Offset

immediateSecurity 1 1
SPP 1 0

sequenceNoLength 2 2
resLength 2 4

sequenceIdWindow 2 6
 integrityAlgTypeLength (I bytes) 2 8

integrityAlgType I 10
icvLength 2 10 + I

keyId 4 12 + I
 keyLength (K bytes) 2 16 + I

key K 18 + I
Fig. 6. Structure of the Security Association Record body

When the beginning of the time in Security Parameter
Update Time is reached, all GroupResponse messages add
further Records, which contain the new parameters for the
following validity period. To simplify matters, these have been
marked with the prefix "Next" (green fields in Figure 5) and are
structurally identical to the "current" Records. If a group
member is excluded in the following period, new security
parameters are not included in the response and the Next Group
Access Indicator Record contains a deny. More details about the
updating process will be described below in chapter VI.D.1.

After sending the GroupResponse message, the server closes
the TLS channel correctly by sending a close notify to the PTP
node. The PTP nodes store the parameters in the local SP and
SA databases after receiving and checking the GroupResponse
message. Now the PTP node is able to build the
AUTHENTICATION TLVs for the respective PTP group as
well as to generate and check the ICVs. The negotiation of the
parameters is now complete.

C. Phase 2: Securing PTP Messages
In this phase the PTP nodes are able to verify or create

secured messages within an assigned PTP group. The procedure
for protecting and checking PTP messages is described
as follows.

1) Protection of PTP Messages: The securing process of the
message to be sent starts with the interpretation of its Policy
Limiting Fields (see Figure 7). These are in particular:
sourcePortIdentity, domainNumber, majorSdoId, minorSdoId as
well as messageType and are already present in the header of the
PTP message. Depending on the PTP implementation, this
information can also be provided elsewhere. The PLF are then
used to determine the associated SP in the Security Policy
Database (SPD), since a device with multiple ports can also have
multiple SPs. Based on the security policy the decision is made
whether the message type is to be secured. If so, the SP contains
a Security Parameter Pointer (SPP), which can then be used to
determine the corresponding SA in the Security Association
Database (SAD). The information contained in the SA enables
the PTP node to construct the AUTHENTICATION TLV [3, ch.
16.14.3]. Due to the Immediate Security Processing used here,
most fields contain fixed values (see Figure 8).

The tlvType must be of the type "AUTHENTICATION" and
has the value 0x8009 [3, ch. 14.1.1]. The lengthField specifies
the payload length of the TLV excluding tlvType and
lengthField. Since no optional fields are included in Immediate
Security Processing and HMAC-SHA256-128 is used in this
approach, the value of the lengthField is always 22 octets
(1+1+4+16). The SPP corresponds to the value from the SP and
enables the receiver to assign the associated SA. The
secParamIndicator is a tuple of Boolean values and signals the
presence of optional fields. Since these are not required, this is
equivalent to the value 0. The keyID identifies the applied key of
the used SA. Since this approach defines only one key per SA,
the value is constant over the SA lifetime. Finally, the ICV is the
checksum calculated over the complete PTP message, which
depends on the HMAC algorithm and the key used. With the
insertion of the AuthTLV at the end of the PTP message
including the ICV, the message is considered secured and can be
transmitted.

2) Verification of PTP Messages: To verify a PTP message,
the recipient must also read the PLF and thus identify the SP in
his SPD (see Figure 9). If the received message is secured
according to the SP, it is checked whether an AuthTLV is present
at the end of the PTP message. Subsequently the SPP is read
from it and the corresponding SA is determined from the SAD.

Field Offset ValueOctets
tlvType 0 0x80092

lengthField 2 0x162
SPP 4 <var>1

keyID 6 <var>4
[disclosed Key] 10 0x0D
[sequenceNo] 10+D 0x0S

[RES] 10+D+S 0x0R
ICV 10+D+S+R <var>K

secParameterIndicator 5 0x01

Fig. 8. Structure of an AUTHENTICATION TLV with unused fields (gray)

Read PLF from PTP header

Identify and read SP
Must this message have been secured?

Read SA

Discard PTP
message

AuthTLV present?

Read AuthTLV from PTP message
(identify SA by SPP)

Recalculate ICV
Calculated ICV = PTP messsage ICV?

Verify AuthTLV
Do the flags meet the expectations?

yes

yes

Process PTP
message

yes
no

no

no

no

yes

PTP message received

Process PTP
message

Fig. 9. Message verification process

Read PLF of the message

Identify and read SP
Must this message be secured?

Identify and read SA

Construct and embed AuthTLV

Calculate and embed ICV

Send unsecured
PTP message

Send secured
PTP message

yes

no

PTP message to be sent

Fig. 7. PTP securing process

Then the PTP node checks whether the SequenceID in the PTP
header meets the expectations and lies within the SequenceID
window defined in the SA to prevent packet replay. If the
remaining parameters in the AuthTLV match the data in the SA
(e.g. various flags), the integrity check is initiated. Together with
the parameters from the SA, the PTP node generates an ICV over
the PTP message and compares it to the ICV in the AuthTLV. If
both are identical, the authenticity of the message is confirmed
and can be further processed by the PTP stack.

D. Features and Limitations
This section explains the functionality and properties of

security parameter rotation and considers the challenges in
unicast connections.

1) Rotation of the Security Parameters: The rotation
mechanism is an important part of this approach. It enables both
the updating of security policies and security parameters (e.g. the
key), as well as an easy way of group control. Thus, this method
ensures key freshness without interruption of a running and
secured PTP communication. The two parameters Validity
Period and Update Time, which are transmitted as part of a
GroupResponse, form the core of this mechanism. To prevent a
potential attack on this method, a loosely time synchronous NTS
key management server is mandatory. The time synchronization
of the NTS-KM server should be both redundant and secure (e.g.
with NTS-secured NTP).

Figure 10 shows a possible example where a six-hour
rotation has been set by the administrator on the NTS-KM
server. Of course any other key exchange frequency is
conceivable as well. The validity period of the parameters
received in the GroupResponse starts at 0:00 and ends at 6:00 of
the current day (left blue period). These points in time are stored
as Unix timestamps and are shown here in simplified form. If
this time range refers to the currently used security parameters,
the current time of the PTP node must also lie within this area.
In this example, the update time parameter is set to 5:00. PTP
nodes that are already in the secured PTP network send a
GroupRequest at a random time after the update time (5:00) has
been reached and before the current parameters have expired
(6:00) in order to obtain the new parameters. This prevents load
peaks on the key management server caused by simultaneous
requests from the PTP nodes upon expiration of the parameters.
This mechanism also ensures that all PTP nodes have already
received the new parameters when the current parameters expire
and can continue operating without interruption (right green
period). Expired parameters are then deleted after a defined
bridging time (e.g. 10 seconds). The bridging time ensures that
PTP packets that were generated and sent during the rotation can
still be checked.

The simple approach also has its limitations. An immediate
group adjustment (e.g. the exclusion of a PTP node) or update of
the security parameters is currently not possible. By establishing
the TLS connection to query the parameters, the resulting traffic
linearly (O(n)) increases in relation to the number of secured
PTP nodes. But due to the moderate size of typical PTP networks
and the low request frequency of the PTP nodes to the NTS-KM
server, the load is insignificant. An extension with the function
of an immediate update requires another connection between
PTP node and KM server. Since in this scenario the data transfer
originates from the KM server, a PTP node would have to listen
permanently on a defined UDP port or a multicast address. One
solution would be comparable to GDOI and the GROUPKEY-
PUSH method [10, ch. 4] defined in it.

2) Challenges in Unicast Communication: Since the
automatic key management system presented above has been
coupled with immediate security processing and is therefore
group-based, it is particularly suitable for multicast connections.
Using of the KM system for securing unicast connections is
possible in principle, but involves further challenges. To create
such a unicast connection, a group with only two participants
(master and slave) may be formed. However, there are
restrictions if Transparent Clocks lie within this path. These
must also be added to the "Unicast" group if support for
correction fields is required. It becomes more difficult if there
are other PTP devices (e.g. Boundary Clocks) between Grand
master and slave. The security and authenticity of the time
information thus strongly depends on the topology of the PTP
network and its participants. If one pursues complete end-to-end
security, this may not be solvable in any case with the procedure
introduced here. One possible approach in those situations is the
TESLA protocol, which can be used as a supplement, but
increases the complexity considerably (see also Section III.B).

There are basically two important challenges with unicast
connections: source authentication and scalability. High source
authenticity is achievable by establishing an exclusive and
secure connection between master and slave. Apart from these
two PTP nodes, the key required for this should only be known
to the NTS-KM that establishes this connection. The support of
Transparent Clocks, which also require the key for this purpose,
remains problematic. A possible approach here is topology
recognition by the NTS-KM, which determines the paths
between slave and master and determines the TCs.

To achieve good scalability, the unicast approach requires
dynamic grouping (for TC support) or pairing between two PTP
nodes. A reasonable method for key distribution is a ticket
system. The very simplified process could look like this: A
master registers once with the NTS-KM via TLS and receives a
symmetric key KM-KE that only both of them know. A slave that
wishes a unicast connection to the master informs the NTS-KM
via a UnicastRequest over the TLS channel and receives a
UnicastResponse including a ticket in addition to the unique
master-slave key KM-S. This ticket is encrypted with KM-KE and
contains the KM-S as well as other security parameters. The slave
can now generate a PTP message (e.g. Sync_Request), which is
secured with KM-S and contains the embedded ticket. The master
is able to decrypt this ticket with KM-KE and subsequently verify
the PTP message with KM-S. Of course, the master is also able to
generate secured PTP messages with this key. The advantage of

Validity Period
(next parameters)

Validity Period
(current parameters)

00:00 05:00 05:59 06:00 11:00 11:59

Request and receive new parameters at a
random point in time within the update period

Validity Period:
Update Time:

00:00 - 05:59
05:00

Fig. 10. Example of a security parameter rotation process (the green box shows
the Validity Period of the upcoming parameters)

this approach is that the tickets do not require a TLS connection
from the KM server (but only from the PTP nodes) to distribute
the keys. Obviously, other aspects like replay protection and
topology changes in the PTP network have to be considered in
this proposal. The detailed elaboration of the NTS-based key
distribution for PTP unicast connection is still necessary and
therefore not part of this paper.

VII. PROOF-OF-CONCEPT IMPLEMENTATION
The following section describes the characteristics and first

results of a PoC-implementation [25]. This is followed by a brief
examination as well as a performance test of the HMAC and
CMAC algorithm.

1) Protocol Implementation and Results: As part of the
concept development, we started the creation of a first minimal
implementation of the key management system. Currently, the
PoC-implementation developed for Linux allows the
authentication and negotiation of parameters between a PTP
node and the KM server. The software is written in C++17 and
also uses the OpenSSL 1.1.1g and Asio C++ libraries to provide
the TLS functionality and other cryptographic operations. Initial
testing confirms the basic functionality of the negotiation and the
automatic update of security parameters. Actually, the PoC
implementation is not linked to a PTP implementation and
therefore still simulates the PTP instances. An integration of the
PoC in the previous work from [19] (Linux PTP) or [20] (PTPd)
would be useful and enable further practice-oriented analyses.
While the size of a GroupRequest is constant at 21 octets, the
data amount of the GroupResponse varies depending on the
security policies defined. If the GroupResponse only contains
one SA at a time, the size of this message is 115 octets. If it also
contains the parameters for the following validity period, the
message grows to 215 octets. When each PTP message type is
protected by its own SA, then 10 SAs are sent for a validity
period. Therefore, the GroupRequest can reach a maximum size
of 1223 octets. According to initial measurements, the
generation time of a typical GroupResponse (with one SA) on a
desktop PC (Intel i9-9900K) takes around 0.3µs, but strongly
depends on the implementation and hardware performance and
must be investigated further.

2) Comparison of HMAC and CMAC: The high accuracy in
PTP is especially due to the exact capture of the transmit and
receive timestamps. PTP defines the transmit timestamp as the
transmission start of the first symbol after the Start of Frame
Delimiter (SFD) of an Ethernet frame. The transmission of this
timestamp by PTP can be done in one-step or two-step mode,
depending on the configuration and hardware support. In two-
step mode, a Follow-up message transfers the transmit
timestamp and is therefore not time critical. In one-step mode,
on the other hand, this timestamp is written into the PTP message
while the sending process of this message is already taking
place. Depending on the transmission speed of the network
interface, only a few microseconds remain for this operation. It
becomes even more difficult if the PTP packet is to be
additionally secured by an ICV. The ability to do this depends
primarily on the amount of data to be secured, the MAC
algorithm and the hardware performance.

A secured PTP packet typically consists of a PTP header, a
PTP body and an AuthTLV. The header has a constant length of
34 octets, the body 10 to 30 octets, depending on the message
type, and the AuthTLV constant 26 octets (including 16 octets
for the ICV). Therefore, 54 to 74 octets per PTP packet (ICV
excluded) must be secured by the MAC algorithm. The
maximum time allowed for the securing process also depends on
the total length of the data to be sent. If PTP uses pure Ethernet
(802.3) as the network protocol (the PTP packet is embedded as
an Ethernet payload), there are an additional 14 octets of the
Ethernet header between the SFD and the ICV. This results in a
total length between SFD and ICV of 68 to 88 octets. In order to
support the one-step mode, the timestamp must be written to the
PTP packet during the transmission of these data quantities and
the ICV must be calculated and embedded. At an Ethernet
transmission speed of 100 Mbit/s, this results in 5.44µs to
7.04µs. If PTP uses IPv4 and UDP as network protocols instead,
an additional 28 octets (IPv4 header: 20 octets; UDP header: 8
octets) are transmitted. For this total length of 96 to 116 octets,
this leads to a transmission time of 7.68µs to 9.28µs. However,
this problem becomes even more critical at higher transmission
speeds (1 GBit/s or higher).

The PTPv2.1 standard recommends the use of HMAC-
SHA256-128 [3, ch. 16.14.3.9] for the securing process.
However, an analysis in [5, ch. IV] showed that this algorithm is
not optimal due to the long block size of 512 bits and that AES-
128-CBC-CMAC is a much better alternative. Thus, a
performance test was executed on two different devices, in
which an increasing amount of random data was secured by a
MAC algorithm. The allocation and freeing of memory was
excluded in these measurements. Figure 11 shows the results on
a Meinberg microSync RX. Even without hardware-supported
AES acceleration, CMAC (fine-staged green line) is superior to

Fig. 12. Comparison of computing time for CMAC and HMAC (desktop PC)

Fig. 11. Comparison of computing time for CMAC and HMAC (microSync)

the HMAC (course-staged blue line) algorithm. The visible
gradations result from the block size of the respective algorithm.
On the microSync, CMAC needs 6.22µs for 54 octets and
HMAC 9.04µs. For 74 octets accordingly 6.87µs and 10.46µs.
As an additional comparison, Figure 12 shows the process on a
desktop PC with an Intel i9-9900K processor and active AES
acceleration. For both measurements, the library OpenSSL
1.1.1g was used as well. The CMAC (lower green line)
algorithm shows significantly better results than HMAC (upper
blue line) and should therefore be included in a future version
of the PTP standard. A purely software-based solution (without
AES acceleration) cannot meet the timing requirements. A
hardware-specialized implementation of the MAC algorithms
(e.g. in FPGAs) can further reduce the latency and thus
enable one-step mode in PTP even with transmission speeds of
1 Gbit/s and above.

VIII. CONCLUSION AND FURTHER WORK
The concept presented and the results of the PoC

implementation illustrate the easy realization of an automatic
key management system for PTPv2.1 based on the NTS key
exchange. In conjunction with the PTP integrated security
mechanism (Prong A), this allows immediate security
processing of PTP messages. Moreover, the NTS-KM offers the
additional use of NTS-secured NTP, which can be used to
increase the redundancy of the PTP network. The examination
of the securing duration of PTP messages on industrial hardware
also showed that CMAC is more suitable than HMAC, which is
especially important in one-step mode.

Further work is concentrating on the optimization and
expandability of this concept by additional functions. This can
be e.g. an instant parameter update method in case of a detected
attack or the usage of Key Tables in each SA, to support multiple
keys per rotation period. Another aspect is the addition of the
Delayed Security Processing or the usage of secured unicast
connections, by extending this approach with a UnicastRequest
and UnicastResponse. The focus here lies on providing
strong source authentication in combination with Immediate
Security Processing.

REFERENCES
[1] "IEEE Standard for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems," IEEE Std 1588-2002,
Oct. 2002, doi: 10.1109/IEEESTD.2002.94144.

[2] "IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems," IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), July 2008.

[3] "IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems," IEEE Std 1588-2019,
Jun. 2020.

[4] N. Moreira, J. Lázaro, J. Jimenez, M. Idirin and A. Astarloa, "Security
mechanisms to protect IEEE 1588 synchronization: State of the art and
trends," 2015 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control, and Communication
(ISPCS), Beijing, 2015.

[5] C. Önal and H. Kirrmann, "Security improvements for IEEE 1588 Annex
K: Implementation and comparison of authentication codes," 2012 IEEE
International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication Proceedings (ISPCS), San
Francisco, CA, USA, Sep. 2012.

[6] A. Treytl and B. Hirschler, "Security flaws and workarounds for IEEE
1588 (transparent) clocks," 2009 International Symposium on Precision
Clock Synchronization for Measurement, Control and Communication
(ISPCS), Brescia, Italy, Oct. 2009.

[7] D. Franke, D. Sibold, K. Teichel, M. Dansarie and R. Sundblad, "Network
Time Security for the Network Time Protocol," RFC 8915, doi
10.17487/rfc8915, Sep. 2020.

[8] D. L. Mills, U. Delaware, J. Martin, J. Burbank and W. Kasch, "Network
Time Protocol Version 4: Protocol and Algorithms Specification," RFC
5905, doi 10.17487/rfc5905, 2010.

[9] M. Langer, K. Teichel, K. Heine, D. Sibold and R. Bermbach, "Guards
and Watchdogs in One-Way Synchronization with Delay-Related
Authentication Mechanisms," 2019 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS), Portland, OR, USA, Sep. 2019.

[10] B. Weis, S. Rowles and T. Hardjono, "The Group Domain of
Interpretation," RFC 6407, doi 10.17487/rfc6407, Oct 2011.

[11] A. Perrig, D. Song, R. Canetti, J. D. Tygar and B. Briscoe, "Timed
Efficient Stream Loss-Tolerant Authentication (TESLA): Multicast
Source Authentication Transform Introduction," RFC 4082, June 2005.

[12] "IEEE Standard for local and metropolitan area networks-Media Access
Control (MAC) Security," in IEEE Std 802.1AE-2018 (Revision of IEEE
Std 802.1AE-2006), Dec. 2018.

[13] S. Kent and K. Seo, "Security Architecture for the Internet Protocol," RFC
4301, doi 10.17487/rfc4301, Dec. 2005.

[14] D. L. Mills, U. Delaware and Brian Haberman, "Network Time Protocol
Version 4: Autokey Specification," RFC 5906, doi 10.17487/rfc5906,
June 2010.

[15] S. Röttger, "Analysis of the NTP Autokey Procedures," Project Thesis,
Technische Universität Braunschweig, Institute of Theoretical Computer
Science, Braunschweig, 2012.

[16] E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.3,"
RFC 8446, doi 10.17487/rfc8446, Aug. 2018.

[17] D. Sibold, S. Roettger and K. Teichel, "Network Time Security," Internet
Draft, draft-ietf-ntp-network-time-security-08, March 2015.

[18] P. Kemparaj and S. S. Kumar, "Secure precision time protocol in packet
switched networks," 2019 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control, and Communication
(ISPCS), Portland, OR, USA, Sep. 2019.

[19] E. Shereen, F. Bitard, G. Dán, T. Sel and S. Fries, "Next Steps in Security
for Time Synchronization: Experiences from implementing IEEE 1588
v2.1," 2019 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control, and Communication
(ISPCS), Portland, OR, USA, Sep. 2019.

[20] D. Maftei, R. Bartos, B. Noseworthy and T. Carlin, "Implementing
Proposed IEEE 1588 Integrated Security Mechanism," 2018 IEEE
International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS), Geneva, 2018.

[21] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen and T. Kivinen, "Internet Key
Exchange Protocol Version 2 (IKEv2)," RFC 7296, Oct. 2014.

[22] K. Teichel and G. Hildermeier, "Experimental evaluation of attacks on
TESLA-secured time synchronization protocols," in Security
Standardisation Research, C. Cremers and A. Lehmann, Eds. Springer
International Publishing, 2018, pp. 37-55.

[23] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen and T. Kivinen, "Internet
Security Association and Key Management Protocol (ISAKMP)," RFC
2408, doi 10.17487/rfc2408, 1998.

[24] T. Mizrahi, "Security Requirements of Time Protocols in Packet Switched
Networks," RFC 7384, doi 10.17487/rfc7384, Oct. 2011.

[25] K. Heine and M. Langer, "NTS-KM PoC implementation," GitLab
Repository, [Online] available: https://gitlab.com/kai_heine/
ntske4ptp, 2020.

	Vorspann Automatic KM 4 PTP
	LCN2020 - Automatic KM for PTP - v1.3.5 - US-Letter (no signature)
	I. Introduction
	II. Preliminaries
	A. New PTP Security Mechanisms
	B. Network Time Security (NTS)

	III. Related Work
	A. State of the Art
	B. Limitations of GDOI and TESLA

	IV. Key Management for PTP – Overview
	A. KM-Protocol Overview and Securing Process
	B. Comparison to GDOI

	V. Security Considerations
	A. Certificates and Trusted Anchor
	B. Key Management Server
	C. Secured PTP Communication

	VI. Key Management for PTP – Details
	A. Requirements and Pre-Configuration
	B. Phase 1: NTS Key Establishment Protocol
	C. Phase 2: Securing PTP Messages
	D. Features and Limitations

	VII. Proof-of-Concept Implementation
	VIII. Conclusion And Further Work
	References

