
Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation
of a

FPGA-based Pipelined
Microcontroller

Rainer Bermbach, Martin Kupfer
University of Applied Sciences Braunschweig / Wolfenbüttel

Germany

Embedded World 2009, Nürnberg, 03.03.09

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 2

OVERVIEW

 INTRODUCTION
 PIPELINING
 STRUCTURE OF THE PIPELINE
 HAZARDS AND THEIR HANDLING
 THE IMPLEMENTED PIPELINE STAGES
 RESULTS
 CONCLUSION

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 3

INTRODUCTION

 PIC-compatible microcontroller (VHDL-PIC) had been developed
– Compatible to a Microchip PIC 16c55x microcontroller featuring

• 8-bit Harvard architecture
• 14-bit instruction word (35 instructions)
• hardware stack (return address only)
• internal RAM space (up to 512 bytes organized in four banks)
• program memory for up to 2k instructions

– Developed for use in System-on-Chip (SoC) designs
– Implemented on a Xilinx Spartan 3 FPGA
– Clock frequency up to 100 MHz (approx. 20 - 22 assembler MIPS)
– Enhancements like debug module, trace-buffer, statistic module

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 4

INTRODUCTION (continued)

 Implementation of a multi-stage pipeline version of the VHDL-PIC
– In principle, one instruction is executed every clock cycle
– Five stages: FETCH, DECODE, READ, EXECUTE, WRITE back
– Fighting problems due to non-sequential program flow
– Mechanisms to prevent working with invalid data

 Motivation
– Implementing a pipeline for increasing processing power
– Study the actual problems in pipeline design, possible approaches

and the concrete solutions
– Better IP for System-on-Chip (SoC) designs

 Result: Nearly three times faster than standard VHDL-PIC

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 5

PIPELINING

 Goal: acceleration of processing speed
 Execution of one instruction is subdivided

into subtasks, each executed in one clock
cycle

 Instructions are processed in parallel in
stages, so every clock cycle one
instruction is concluded

 Hazards limit the processing speed:
– Structural hazards (architecture)
– Data hazards (data dependencies)
– Control hazards (any kind of branches)

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 6

STRUCTURE OF THE PIPELINE

 Five processing stages:
– FETCH: builds the program counter (PC) for the next instruction and

fetches this instruction from the program memory
– DECODE: analyzes the opcode and sets signals for following stages
– READ: builds the address and reads the operand
– EXECUTE: calculates the result of the instruction
– WRITE back: writes the result back to respective memory position

 Pipeline registers: register between adjacent stages for passing
information belonging to one instruction to the next stage.

– Mechanisms for halting and flushing instructions

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 7

HAZARDS – Types of Hazards

 Structural hazards: non-exclusive access to hardware resources
– e.g. program or data memory with one bus for read and write access

does not allow simultaneous read and write action.

 Data hazards: two or more instructions in the pipeline need access
to the same memory position

– a memory position needs to be read while another instruction
calculates its new value which is not written back yet.

– writing to one register may effect the execution of other instructions
(writing to status register, ports).

 Control hazards: a branch invalidates already fetched instructions
and the pipeline has to be restarted with the jump’s destination
address.

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 8

HAZARDS – Structural / Data Hazard Handling

 Structural hazards: handled through use of additional hardware
– All stages have exclusive access to necessary hardware resources e.g.

dual-port RAM for memory, different busses for read and write access.

 Data hazards: detected and handled in READ on basis of
addresses

– Data hazard detection unit detects all
possible data hazards using the
addresses of write operations

– Signals are set for different actions:
• Data forwarding: the input of the

EXECUTE stage can use new results instead of the data read
• Halting the pipeline: waiting until data is written back

(Status register and port access)

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 9

HAZARDS – Data Hazard Detection Unit

 An instruction writing a result to a memory position may release a
data hazard, a so- called condition instruction.

 A read of the same or a depending memory position within a
defined amount of cycles activates a data hazard, a so-called
trigger instruction.

 The DHDU detects all condition instructions and sets signals for
handling data hazards depending on the type, when a trigger
instruction occurs

 All instructions are stored in a shift register for two cycles, another
register tags a condition instruction

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 10

HAZARDS – Data Hazard Detection Unit (cont.)

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 11

HAZARDS – Control Hazards
 Control hazards: detection as early as possible for fast reaction

– Normal branches (destination included in the opcode) are detected in
DECODE and the destination is fetched in the same clock cycle

• To handle return and call instructions efficiently the stack is
realized as dual-port RAM

– One port accesses the stack output via a read stack pointer
– The other port writes the stack by use of a write stack pointer
– Therefore stack access is done in one cycle

– Computed jumps are detected in READ (PCL as target address)
• All instructions in the pipeline become invalid, the pipeline is

halted until the destination address is calculated in EXECUTE
• The same cycle the destination address is calculated the

respective instruction can be fetched by forwarding the ALU
result to FETCH

– Conditional jumps are described on next slide

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 12

HAZARDS – Handling Conditional Jumps

 Conditional jumps (CJ) are assumed not to skip the subsequent
instruction, decision is made in EXECUTE depending on the result
– type of static branch prediction

 The CJ does not skip (Example 1)
– The program execution is valid

 The CJ skips the subsequent instruction (Example 2)
– The skipped instruction is no unconditional branch

• The skipped instruction is flushed from the pipeline by filling the pipeline
register between READ and EXECUTE with the value of a No Operation
(NOP)

– Skipping an unconditional branch (typically loop end, Example 3)
• The branch is already executed in DECODE and the instructions now in

DECODE and FETCH are invalid. Together with the one in READ they
are removed from the pipeline and the next instruction is built in FETCH
by using the PC_Branch register.

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 13

HAZARDS – Conditional Jumps, Example 1

 The CJ does not skip
 The program execution is valid

 No cycle losses

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 14

HAZARDS – Conditional Jumps, Example 2

 The instruction to be
skipped is flushed
from the pipeline by
filling register R/E
with a NOP

 The CJ skips the subsequent
instruction

 The skipped instruction is no
unconditional branch

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 15

HAZARDS – Conditional Jumps, Example 3

 The GOTO is already
executed, instructions
in FETCH, DECODE,
READ are invalid
filled with NOP resp.
newly built in FETCH
by using the
PC_Branch register

 The CJ skips the subsequent
instruction

 The skipped instruction is an
unconditional branch (loop end)

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 16

THE IMPLEMENTED PIPELINE STAGES

 FETCH
– Creating the PC for the next instruction
– PC is depending on several inputs from subsequent stages where

control hazards may appear

– The created PC is
used to read the
instruction code from
the program memory

– The PC is also written
to a register to build a
new PC in the next
clock cycle

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 17

THE IMPLEMENTED PIPELINE STAGES (cont.)

 DECODE
– In the DECODE stage the instruction code is analyzed and signals for

subsequent stages are set
– Control hazards are detected and signaled to FETCH

 READ
– Building of the address

for read and/or write
access

– Read the requested
memory position from
data memory

– The DHDU detects data
hazards and set signals
for handling them

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 18

THE IMPLEMENTED PIPELINE STAGES (cont.)

 EXECUTE
– Calculates the result of an instruction depending on signals from the

previous stages
– Signals computed jumps and skipping unconditional jumps to FETCH
– Input depends on signals from READ (data hazard detection unit)

 WRITE back
- Write back

the result to
respective
memory
position

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 19

 The pipelined VHDL-PIC was compared to a non-pipelined one
using two different benchmarks (nearly best case and a worst
case scenario = 71% conditional jumps with false branch
prediction)

– Standard (timing optimized) VHDL-PIC, up to 100 MHz with 25
assembler MIPS for sequential workload (typically 20 MIPS for
normal workload depending on frequency of branches) (CPI = 4)

– Pipelined PIC reaches up to 70 MHz resulting in 70 assembler MIPS
for sequential workload (less for normal workloads) (CPI =1)

 Overall, the program execution is three times faster than in the
standard version

 Not optimized in timing up to date

RESULTS

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 20

RESULTS (continued)
 The hardware needs for implementing the pipeline is analyzed by comparing

the pipelined VHDL-PIC to the standard VHDL-PIC, too

 The amount of hardware is increased by approx. 30%, most of the additional
hardware is used for

– Data hazard detection unit
– Input multiplexer (PC, ALU)
– Pipeline register

 There are enough hardware resources left (in a Spartan-3 XC3S200) for
implementing other System-on-Chip components

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 21

CONCLUSION

 Development and implementation of a multi-stage pipeline PIC
compatible VHDL microcontroller

 Instruction execution is realized in five stages (F, D, R, E, W)
 Structural hazards are eliminated in concept phase by choosing

dual-port RAM, separated busses …
 Data hazards are handled efficiently in the DHDU, data forwarding

is used for eliminating any loss of cycles
 The pipeline is optimized for handling control hazards, most

branches are executed without any loss of cycles, two cycles lost
in worst case

 Up to three times faster at 70 MHz by only 30% increased
hardware resources (14 times faster than standard PIC products
at 20 MHz)

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 22

Fachhochschule Braunschweig / Wolfenbüttel
- University of Applied Sciences -

Design and Implementation of a FPGA-based
Pipelined Microcontroller

Embedded World 2009 Rainer Bermbach, Martin Kupfer 23

HAZARDS – Data Hazard Handling - Data Forwarding

