Gliederung der Vorlesung Design Digitaler Systeme (DDS / RA2)

(Die Teile IV. bis VII. werden je nach zur Verfügung stehender Zeit gehalten)

I. Field Programmable Gate Arrays – FPGAs

Grundstruktur Verdrahtungsressourcen Aufbau und Funktion eines CLB Struktur eines IOB Weitere interne Einheiten Eigenschaften von FPGA-Familien Programmiertechnologien

II. Schaltungsdesign mit FPGAs

Grundsätzliche Designvorgaben Synchrones Design Setup- und Hold-Zeit Metastabilität Generierung von Verzögerungen Floating Nodes **Bus Contention**

III. VHDL

1 EINFUHR	UNG

- 2 SYNTHESE EINFACHER SCHALTWERKE
 - 2.1 ENTITY, ARCHITECTURE UND SIGNALE
 - 2.1.1 Lokale Signale
 - 2.1.2 Richtung von Entitysignalen
 - 2.1.3 Bussignale
 - Datentypen 2.1.4
 - 2.2 SIMULATION VON VHDL-ENTWÜRFEN
 - 2.3 SCHALTNETZE MIT BOOLE'SCHEN OPERATOREN
 - 2.4 SELEKTIVE UND BEDINGTE SIGNALZUWEISUNG
 - 2.5 VERZÖGERUNG, ZEITMODELLE

3 PROZESSE

- 3.1 DEKLARATION UND AUSFÜHRUNG VON PROZESSEN
- 3.2 SCHALTNETZE MIT SEQUENTIELLEN ANWEISUNGEN

 - 3.2.1 Case-Anweisung3.2.2 If-Anweisung (if-then-elsif/else)
 - 3.2.3 Schleifen
 - 3.2.4 Wait-Anweisung
- 3.3 D-FLIPFLOPS, REGISTER, SCHIEBEREGISTER
- 3.4 LATCHES
- 3.5 KOMBINATORISCHE SCHLEIFEN
- 3.6 UNVOLLSTÄNDIGE SENSITIVITY LISTS
- 3.7 SYNTHESERICHTLINIEN
 - 3.7.1 Taktsynchrone Umgebungen
 - 3.7.2 Außerhalb taktsynchroner Umgebungen
- 3.8 ATTRIBUTE
- 3.9 ASSERT-ANWEISUNG
- 4 DATENTYPEN STD_ULOGIC UND STD_LOGIC
 - 4.1 TRISTATE-TREIBER
 - 4.2 DON'T CARE
 - 4.3 KONVERSION DER DATENTYPEN BIT UND BIT VECTOR
- 5 ARITHMETIK UND SYNCHRONZÄHLER
 - 5.1 ARITHMETIK-OPERATOREN UND ZUGEHÖRIGE DATENTYPEN
 - 5.2 SYNCHRONZÄHLER
 - 5.3 ARITHMETIK MIT DEN DATENTYPEN SIGNED UND UNSIGNED
 - **5.4 INTEGER-ARITHMETIK**
 - 5.5 ARITHMETIK MIT SYNOPSYS-BIBLIOTHEKEN
- 5.6 KONVERSIONSFUNKTIONEN DER FIRMA SYNOPSYS
- **6 ZUSTANDSAUTOMATEN**

7 STRUKTURELLER VHDL-ENTWURF

- 7.1 KOMPONENTENDEKLARATION
- 7.2 KOMPONENTENINSTANZIIERUNG UND PORT MAP
- 7.3 KONFIGURATION
- 7.4 PORT-MODI DER VERSCHALTETEN SIGNALE IN STRUKTURBESCHREIBUNG
- 7.5 FUNKTIONEN UND PROZEDUREN
- 7.6 PACKAGES

IV. Cache-Speicher

- 5.1 Warum braucht man Cache-Speicher?
 - 5.1.1Speicherhierarchie
 - 5.1.2 Anwendungen von Caches
- 5.2 Cache-Strukturen
- 5.3 Aufbau und Organisation
- 5.4 Cache-Architekturen
 - 5.4.1 Voll-assoziativer Cache
 - 5.4.2 Direct-Mapped Cache
 - 5.4.3 Mehrfach-assoziativer Cache
- 5.5 Cache-Strategien
- 5.6 Zusammenfassung

V. Einsatz von Pipelining bei Mikroprozessoren

- 6.1 Einleitung
 - 6.1.1Wie ist diese Steigerung möglich?
- 6.2 Ein einfaches Prozessormodell
 - 6.2.1 Befehlsphasen
 - 6.2.2 Lineare Befehlsfolge
 - 6.2.3 Beschleunigung durch Pipelining
 - 6.2.4 Pipeline-Tiefen üblicher Prozessoren
- 6.3 Strukturhasards
- 6.4 Datenhasards
- 6.5 Kontrollflusshasards
- 6.6 Zusammenfassung

VI. Speicherverwaltung bei Prozessoren

VII. CISC, RISC

- 7.1 CISC RISC
- 7.2 Hintergrund
- 7.3 Merkmale von RISC-Architekturen
- 7.4 Beispielarchitektur SPARC
- 7.5 Zusammenfassung