

Lehrbeispiel 1.1: Netzwerk mit drei Zweigen

Bibliotheken aus [2a]
Gleichstrom-Analyse Arbeitspunkt-Analyse (Bias Point)

Bild 1.2: Simulationsergebnisse (Lehrbeispiel 1.1) [Stromzählpfeile manuell gesetzt]

* Schematics Netlist LB 1.1 *

V_UA	3	4	24V
V_UB	3	1	12V
V UC	3	2	5V
R_R1	4	0	1k
R R2	1	0	1k
R R3	2	0	1k

```
** Analysis setup **
.TEMP 20
.OP
```

*** RESUMING LB_1_1.cir *** .probe .END

• Aufruf der Lösungen (nur bei einer gezeichneten Schaltung) über:

> Enable Bias Voltage Display <	[Werte der Knotenpotentiale]
> Enable Bias Current Display <	[Werte der Zweigströme]

Weitere Informationen (ohne Schaltung): Analysis → Examine Output (Output-File)

Lehrbeispiel 1.2: Grundstromkreis

Bibliotheken aus [2a] DC-Analyse DC-Main-Sweep Bild 1.5: Grundstromkreis zum Lehrbeispiel 1.2

* Schematics Netlist LB_1.2 *

V_Uq 1 0 10V R Ri 1 Α 50 R Ra A 0 $\{RL\}$.PARAM RL=1k ** Analysis setup ** .DC LIN PARAM RL 1 1 1k .TEMP 20 .OP *** RESUMING LB_1_2.cir *** .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

a) Trace $\rightarrow Add$ Trace	V(A)	[Verlauf der Spannung über R_a]
b) Trace \rightarrow Add Trace	I(R_Ra)	[Verlauf des Stromes durch R_a]

Bibliotheken aus [2a]	
DC-Analyse DC-Main-Sweep	

Bild 1.5: Simulationsschaltung zum Lehrbeispiel 1.3

* Schematics Netlist LB_1.3 *

V_Uq R_Ri R_Ra .PARA	1 1 A M RL=	0 A 0 =1k	10V 50 {RL}				
** Ana .DC .TEMP .OP	alysis se LIN 9	etup ** PARA 20	М	RL	1	1k	1
*** RF .probe .END	ESUMI	NG LB <u></u>	_1_3.cii	. ***			

• Aufruf von Variablen und Darstellung von Funktionen im **PROBE-Fenster** über:

a) $Trace \rightarrow Add Trace$	V(A)/MAX(V(A))
b) Trace \rightarrow Add Trace	I(R_Ra)/MAX(I(R_Ra))
c) Trace \rightarrow Add Trace	V(A)*I(R_Ra)
oder:	V(A)*I(R_Ra)/500mW

[Normierte Spannung über R_a] [Normierter Strom durch R_a] [Verlauf der Leistung P_a] [Normierte Leistung $P_a/P_{a,max}$]

Lehrbeispiel 1.4: Brückenabgleich

Bild 1.12: Schaltung mit gesetzten Parametern zur Simulation des Brückenabgleiches

* Schematics Netlist LB_1.4 *

V Uq A	0	10V				
R ^R x A	С	500				
R RG C	D	100				
R RN C	0	{RME	\$}			
RT RS	0	D	{(1k*	(1-{SS	}))+.00	1}
RBRS	D	А	{(1k*	{SS})+	.001}	2
.PARAM	SS=1	RMB=	=100	,	,	
** Analysis s .DC LIN + PARAM .TEMP 2 .OP	etup ** PARA RMB 0	.M LIST	SS 125	0 250	1 500	0.01 1500
*** RESUM .probe .END	ING LB	_1_4.ci	r ***			

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add Trace \ I(R_RG)$ [Strom durch den Querzweig der Brücke]

Lehrbeispiel 1.5: Belasteter Spannungsteiler

Bibliotheken aus [2a]
DC-Analyse DC-Main-Sween
DC-Nested-Sweep

Bild 1.15: Simulation eines belasteten Spannungsteilers

* Schematics Netlist LB_1.5 *

V Uq 1 0 10V R Ra A 0 $\{RL\}$ RT RS 1 $\{(1k*(1-\{SS\}))+.001\}$ А RB RS $\{(1k^* \{SS\})+.001\}$ А 0 .PARAM SS=1 RL=100 ** Analysis setup ** .DC LIN PARAM SS 0 0.01 1 + PARAM RL LIST 10 100 1k 10k .TEMP 20 .OP *** RESUMING LB_1_5.cir *** .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im **PROBE-Fenster** über:

a) $Trace \rightarrow Add Trace$	V(A)	[Verlauf der Ausgangsspannung]
b) Trace \rightarrow Add Trace	I(RB_RS)	[Verlauf des Querstromes]

Test:	Thu	Feb	04	13:38:09 2021
1000	1110	1 00	U 1	10.00.00 2021

OSTFALIA Hochschule für angewandte Wissenschaften

Lehrbeispiel 1.6: Reihenschaltung RL

Bibliotheken aus [2a]
Transienten-Analyse

Bild 1.22: Schaltung zum Lehrbeispiel 1.6

* Schematics Netlist LB_1.6 *

V_Uq R_R1 L_L1	1 1 2	0 2 0	AC 1V 50 10mH	SIN 0	1V 1kHz 0 0 0
** Ana .TRAN .TEMP .OP	lysis se	tup ** 0 20	5ms	0	lus
*** RE .probe .END	SUMI	NG LB_	_1_6.cii	***	

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add \ Trace \quad V(1) \quad V(1)-V(2) \quad V(2) \qquad [Zeitfunktionen aller Spannungen]$

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

Test: Mon Feb 08 10:27:10 2021

Bibliotheken aus [2a]	
Transienten-Analyse	

Bild 1.25: Überlagerung im Lehrbeispiel 1.7

* Schematics Netlist LB_1.7 *

V_U1 1 V_U2 2 V_U3 3 V_U4 4 R_R1 4	0 1 2 3 0	SIN 0 5V 1kH2 SIN 0 3V 2kH2 SIN 0 1V 3kH2 SIN 0 4V 4kH2 1k	z 0 0 0 z 0 0 0 z 0 0 0 z 0 0 0 z 0 0 0
** Analysis .TRAN .TEMP .OP	setup ** 0 20	3ms 0	lus
*** RESUM .probe .END	IING LE	3_1_7.cir ***	

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

Trace \rightarrow *Add Trace* V(4) [Zeitfunktion der Spannung u_{R1}]

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

Test: Mon Feb 08 10:34:04 2021

Lehrbeispiel 1.8: Einsatz von AC-Messgeräten

Bibliotheken aus [2a]
AC-Analyse (feste Frequenz) Einsatz von AC-Metern

Bild 1.29: Schaltung zum Lehrbeispiel 1.8

* Schematics Netlist LB_1.8 *

V Uq	Х	0	AC	1V	SIN 0 1V 1kHz 0 0 0
R R1	Y	Ζ	50		
L_L1	0	Ζ	10mH		
V Ameter1	Х	Y	AC	0	
.WATCH	AC	IM(V_	Ameter	:1)	IP(V_Ameter1)
.PRINT	AC	IM(V_	Ameter	:1)	IP(V_Ameter1)
.WATCH	AC	VM([Z	Z],[0])	VP([Z]],[0])
.PRINT	AC	VM([Z	Z],[0])	VP([Z]],[0])
.WATCH	AC	VM([Y	[],[Z])	VP([Y],[Z])
.PRINT	AC	VM([Y	(],[Z])	VP([Y],[Z])
** Analysis se	etup **				
.AC LIN	1	1k	1k		
.TEMP	20				
.OP					
*** RESUMI .probe .END	NG LB	_1_8.ci	r ***		

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

> Watch < [bei: Simulation Status Window] [Anzeige der Messwerte]

Lehrbeispiel 1.9: RC-Tiefpass

Bild 1.32: Schaltung zum Lehrbeispiel 1.9

* Schematics Netlist LB_1.9 *

V Uq ein 0 AC 1V SIN 0 1V 1k 0 0 0 R R1 ein aus 1k C C1 aus 0 159.2nF ** Analysis setup ** 1000 100Hz 100kHz .AC DEC .TEMP 20 .OP *** RESUMING LB 1.9.cir *** .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

a) $Trace \rightarrow Add Trace$	V(aus)	[Amplitudenfrequenzgang der Ausgangsspannung]
b) $Trace \rightarrow Add Trace$	P(V(aus))	[Phasenfrequenzgang der Ausgangsspannung]

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

Test: Mon Feb 08 10:46:23 2021

Lehrbeispiel 1.10: Reihenschwingkreis

Bibliotheken aus [2a]
AC-Analyse
AC-Sweep (Decade)

Parametric-Sweep

Bild 1.37: Reihenschwingkreis mit AC-Sweep und Parametric-Sweep

* Schematics Netlist LB_1.10 *

V Uq	ein	0	AC	1V	SIN 0	1V 1k 0	000
C CI	ein	CL	100nF				
L_L1	CL	aus	40mH				
R_R1	0	aus	$\{RV\}$				
.PARA	M RV=	=10					
** Ana	alysis se	tup **					
.AC	DEC	1000	100Hz	100kH	Z		
.STEP	PARA	Μ	RV	LIST	10	40	100
.TEMF)	20					
.OP							
*** RI	ESUMI	NG LB	_1.10.ci	r ***			
.probe							
.END							

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

a) $Trace \rightarrow Add Trace$	V(aus)	[Amplitudenfrequenzgang der Ausgangsspannung]
b) Trace $\rightarrow Add Trace$	P(V(aus))	[Phasenfrequenzgang der Ausgangsspannung]

Test: Mon Feb 08 10:54:09 2021	Ende dieses Beispiels
--------------------------------	-----------------------

Bibliotheken aus [2a]
(V3Phase wurde durch drei Quellen VSIN ersetzt).
Transienten-Analyse

Bild 1.48: Simulation der Lastströme

 $R_1 = 120 \Omega$, $R_2 = 200 \Omega$ und $R_3 = 150 \Omega$.

Für die Widerstände gelten in diesem Beispiel folgende Werte:

* Schematics Netlist LB_1.11 *

V_U1M	L1	0	SIN 0	325V 50 0 0 0	
V_U2M	L2	0	SIN 0	325V 50 0 0 -12	0
V_U3M	L3	0	SIN 0	325V 50 0 0 120	
R R1	L1	1	120		
R_R2	L2	1	200		
R_R3	L3	1	150		
R_RH	0	1	1u		
** Analysis	setup **	k			
.TRAN	0	40ms	0	10us	
.TEMP	20				

*** RESUMING LB_1_11.cir *** .probe .END

.OP

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

$Trace \rightarrow Add Trace$	$I(R_R1)$	$I(R_R2)$	$I(R_R3)$	I(R_RH)	[Zeitfunktionen <i>i</i> Lx]
-------------------------------	-----------	-----------	-----------	---------	------------------------------

Test: Mon Feb 08 11:15:05 2021	Ende dieses Beispiels
--------------------------------	-----------------------

Lehrbeispiel 1.12: Auf- und Entladen eines Kondensators

(in der Netzliste zur Übung mit **Sw_tClose** und **Sw_tOpen**)

Bild 1.61: Testschaltung für Sw_perChange / Netzliste mit Sw_tClose/Open

* Schematics Netlist LB_1.12 *

V_Uq	1	0	10V		
R R1	2	3	10k		
C C1	3	0	10uF	IC=0V	
X U1	2	0	Sw tC	lose PA	RAMS: tClose=500ms ttran=1u Rclosed=1m
+ Ropen=	1G		_		
X U2	1	2	Sw tO	pen PA	RAMS: tOpen=500ms ttran=1u Rclosed=1m
+ Ropen=	1G		_	1	1
** Analysi	is se	tup **			
.TRAN		0	1s	0	lus
.TEMP		20			
.OP					
*** RESU	MI	NGIB	1 12 c	ir ***	
nrohe	10111		_1_12.0	-11	
.END					

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add Trace$ V(3)[Zeitfunktionen beim Auf- und Entladen]Anmerkung: Die Berechnung dauert hier etwas länger (Step Ceiling = 1us).

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

Test: Tue Feb 09 10:41:28 2021

Lehrbeispiel 1.13: Periodisches Umschalten eines vorgeladenen Kondensators

* Schematics Netlist LB_1.13 *

V_UP	1	0	DC	0	AC	0	
+ PULSE	0V	1V	200us	0us	0us	500us	1ms
R_R1	1	2	500				
C_C1	2	0	0.5uF	IC=0V			
** Analysis se	etup **						
.TRAN	0	5ms	0	lus			
.TEMP	20						
.OP							
*** RESUMI	NG LB	_1_13.c	ir ***				
.probe							
.END							

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

Trace \rightarrow *Add Trace* V(1) und: V(2) [Zeitfunktionen u_p und u_{C1}]

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

Test: Mon Feb 08 13:04:19 2021

Ende dieses Beispiels

Lehrbeispiel 1.14: Ladungsausgleich in einer Reihenschaltung

Bibliotheken aus [2a]

Transienten-Analyse (in der Netzliste zur Übung mit Sw_tClose) RH im Bild ausgeblendet

Bild 1.74: Schaltung zur Simulation des Ladungsausgleichs (Lehrbeispiel 1.14)

* Schematics Netlist LB_1.14 *

V_Uq	1	0	20V	
R_RH	А	0	10Me	g
R_R1	0	В	10k	
C_CX	D	А	1uF	IC=10V
C_CY	А	В	4uF	IC=20V
X U1	1	D	Sw to	Close
+ PARAMS	S: tClose	=1ms ttr	an=lus	s Rclosed=1m Ropen=1G
** Analysis	s setup *	*		
.TRAN	0	30ms	0	1us
.TEMP	20			
.OP				
*** RESUN .probe .END	MING L	B_1.14.c	ir ***	

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

a) Trace $\rightarrow Add Trace$	V(D)-V(A)	[Spannungsverlauf u_x]
b) Trace $\rightarrow Add Trace$	V(A)-V(B)	[Spannungsverlauf u_y]
c) Trace $\rightarrow Add Trace$	V(B)	[Spannungsverlauf u_{R1}]

Lehrbeispiel 1.15: Freie gedämpfte Schwingung

	R2 500	C1 30uF	H	Bild 1.82: Scha	Bibliothek Transiente altung zur Simi	en au en-An ulation	is [2a] alyse eines gescl	halteten Parallelschwingkreises
* Schemati	cs Netlis	st LB_1.15 *						
I_IP 0 R_R2 1 C_C1 1 L_L1 1	1 0 0 0	PULSE 500 30uF 20mH	0	100mA	10ms	0	0	100ms 200ms
** Analysis .TRAN .TEMP .OP	s setup * 0 20	* 600ms	0	100us				
*** RESUI .probe .END	MING L	B_1.15.cir ***	*					

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add \ Trace \qquad V(1) \qquad [Schwingungsverlauf des PSK]$

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

Test: Mon Feb 08 13:27:23 2021

Ende dieses Beispiels