

Lehrbeispiel 2.1: Kennlinie einer Glühlampe

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

Trace \rightarrow *Add Trace* I(G_G1) [Kennlinie der Glühlampe I = f(U)]

Weitere Informationen (ohne Schaltung): Analysis → Examine Output (Output-File)

Lehrbeispiel 2.3: Temperaturabhängigkeit

Bibliotheken aus [2a]

DC-Analyse DC-Main-Sweep DC-Nested-Sweep

Bild 2.11: Schaltung für den Temperatur-Sweep

* Schematics Netlist LB_2.3 *

0 10V V Uq 1 R R1 1 0 Rbreak 1k ** Analysis setup ** .DC LIN **TEMP -50** 100 0.1 + Res Rbreak(TC1) LIST -0.6m -0.03m 0.2m .OP *** RESUMING LB_2_3.cir *** .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

Trace \rightarrow *Add Trace* V(1)/I(R R1) [Widerstandsänderung bei Temperaturänderung]

• Aufruf von Variablen und Darstellung von Funktionen im **PROBE-Fenster** über:

$Trace \rightarrow Add \ Trace$	V(1)	ändern in:	
	0.5m*SQRT	(2*FREQUENCY)	[Frequenzgang der Hilfsvariablen x]

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

** Analysis setup **

20

*** RESUMING LB_2_4.cir ***

DEC

1000 10kHz 100Meg

.AC

.OP

.TEMP

.probe .END

Lehrbeispiel 2.5: HF-Ersatzschaltbild Kondensator

R ESR Lers ein Bibliotheken aus [2a] 3 20nH 0.1 Jq С AC-Analyse 100nF AC- Sweep (Decade) 0 Bild 2.20: Simulation der HF-Ersatzschaltung * Schematics Netlist LB 2.5 * V Uq ein 0 AC 1VSIN 0 1V 1k 0 0 0 L Lers 2 ein 20nH R R ESR 3 2 0.1 C_C 3 0 100nF ** Analysis setup ** DEC 10000 10k .AC 100MEG .TEMP 20 .OP *** RESUMING LB 2 5.cir *** .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

$Trace \rightarrow Add Trace$	V(ein)/I(R_R_ESR)	[Frequenzgang der Impedanz]
ändern:	$Plot \rightarrow Axis \ Settings \rightarrow Y-Axis:$	• Log

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

(Orig.: LB_2.4)

Lehrbeispiel 2.6: Wicklungskapazität einer Spule

(Orig.: LB_2.5)

* Schematics Netlist LB 2.6 *

Bibliotheken aus [2a]

AC-Analyse AC-Sweep (Decade) Parametric-Sweep

Bild 2.31: Schaltung zum Lehrbeispiel 2.6

I_Iq R_RFe R_RCu C_C1 C_Cw L_L1 .PARAM	0 2 1 1 2 2 Cers=	1 0 2 0 0 0 0 10pF	AC 100k 20 {Cers} 10p 10mH	10mA	SIN	0	10mA	1kHz	0	0	0
** Analysis se	etup **										
.AC	DEC	1000	100k	1MEG							
.STEP	PARA	Μ	Cers	LIST	0	20p	50p	100p			
.TEMP 20	0										
.OP											
*** RESUMI .probe .END	NG LB	_2_6.ci	r ***								

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

Trace \rightarrow *Add Trace* V(1) [Frequenzgänge der Spannung U_{Spule}]

Lehrbeispiel 2.7: Magnetisierungskennlinie

(Orig.: LB_2.6)

Bibliotheken aus [2a]

DC-Analyse DC-Main-Sweep

Bild 2.35: Schaltung zur Aufnahme der Magnetisierungskennlinie

* Schematics Netlist LB_2.7 *

I_Iq L1_TX1 L2_TX1 K_TX1 R_R1	0 P S L1_T S	P 0 0 'X1 0	DC 10H 0.1H L2_T 10ME	1A X1 EG	1	kbreak
** Analysis .DC LIN .TEMP .OP	setup * I_Iq 20	* 0A	10A	1mA		
*** RESUM .probe .END	IING L	B_2.7.c	ir ***			

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

$Trace \rightarrow Add \ Trace$	$B(K_TX1)$	[magnetische Flussdichte]
	Anmerkung: Die Achsen	müssen noch nachbearbeitet werden (Einheiten nach DIN).

Weitere Informationen: Analysis → Examine Output (Output-File)

Test: Thu Feb 11 12:56:43 2021

Lehrbeispiel 2.8: Kennlinie Heißleiter

Bibliotheken aus [2a] DC-Analyse DC-Main-Sweep

Bild 2.51: Schaltung zum Lehrbeispiel 2.8

* Schematics Netlist LB_2.8 *

V_Uq	1	0	10V				
R_R1	1	0	Rbreak	x {A*E	XP(B/T)}	
.PARAM	A=21.	3158m	B=342	0			
.PARAM	T=293	TC1=-	40m				
** Analysis se .DC .TEMP .OP	etup ** LIN 20	PARA	М	Т	233	393	1
*** RESUMI .probe .END	NG LB	_2_8.cii	***				

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add \ Trace \qquad V(1)/I(R_R1) \qquad [Widerstands-Temperatur-Kennlinie]$

Lehrbeispiel 2.9:	Kennlinie Kaltleiter
-------------------	----------------------

(Orig.: LB_2.8)

Bibliotheken aus [2a]
DC-Analyse DC-Main-Sweep

Bild 2.57: Schaltung zum Lehrbeispiel 2.9

* Schematics Netlist LB_2.9 *

V_Uq R_Rmin R_Rmax R_RT .PARAM	ein ein 1 1 T=50	0 1 0 0	1V 150 220k {0.1*E	EXP(T*	T/3000))}	
** Analysis se .DC .TEMP .OP	etup ** LIN 20	PARA	М	Т	20	300	1
*** RESUMI .probe .END	NG LB	_2_9.ci	r ***				

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

$Trace \rightarrow Add \ Trace$	V(ein)/I(R_Rmin)	[Widerstands-Temperatur-Kenn	linie]
---------------------------------	------------------	------------------------------	--------

(Orig.: LB_2.9)

Lehrbeispiel 2.10: Kennlinie Varistor

* Schematics Netlist LB_2.10 *

I Iq 0 1 DC 1A 1 0 R VDR 100 ** Analysis setup ** .DC LIN I_Iq -1 1 10u .TEMP 20 .OP *** RESUMING LB 2 10.cir *** .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

a) $Trace \rightarrow Add Trace$	I(R_VDR)	[Grafik ist vorerst nur vorbereitet !]
ändern über:	$Plot \rightarrow Axis \ Settings$	$x \rightarrow X$ -Axis \rightarrow > Axis-Variable <
SGN(I(R_VDR))*25	0*PWR(I(R_VDR),0.	.2) [Strom-Spannungs-Kennlinie]

Weitere Informationen: Analysis → Examine Output (Output-File)

Test: Sat Feb 13 10:17:24 2021

Bił	bliotheken aus [2a]
DC	C-Analyse
DC	C-Main-Sweep (Decade)

Bild 2.65: Schaltung zum Lehrbeispiel 2.11

* Schematics Netlist LB_2.11 *

V Uq 1 0 1VR Rp 0 {RpH*PWR(E,-GAM)} 1 .PARAM RpH=149.5k GAM=0.825 .PARAM $E=1_lx$ ** Analysis setup ** DEC PARAM .DC E 0.1 1000 1000 .TEMP 20 .OP *** RESUMING LB 2.11.cir *** .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

Trace \rightarrow *Add Trace* V(1)/I(R_Rp) [Kennlinie: $R_p = f(E)$]

Bibliotheken aus [2a]

DC-Analyse DC-Main-Sweep DC-Nested-Sweep

Bild 2.70: Simulation der I-U-Kennlinie

* Schematics Netlist LB 2.12 *

V_Uq R_RB .PARAM	1 1 B=1	0 0 R0=50	1V {R0*(1	+8*B*	B)}			
** Analysis se .DC + PARAM	etup ** LIN B	V_Uq LIST	0 0	15 0.3	0.1 0.5	0.7	1	1.5
.TEMP .OP *** RESUMI	20 NG LB	2 12.c	ir ***					
.probe .END								

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

a) $Trace \rightarrow Add Trace$	I(R_RB)	[Kennlinien: $I_{\rm B} = f(B)$]
	⇒ Sweeps ändern (si	ehe Lehrbuch: LB 2.11)
b) Trace \rightarrow Add Trace	V(1)/I(R_RB)	[Kennlinie: $R_{\rm B} = f(B)$]

Prof. Dr.-Ing. Rainer Ose **Elektrotechnik für Ingenieure** - Bauelemente ... mit PSPICE -

OSTFALIA Hochschule für

1. Auflage, überarbeitet für E-Book, 2020

Kennlinie der Universaldiode 1N 4148

(Orig.: LB_2.12)

angewandte Wissenschaften

Tabelle 2.8: Modell-Parameter von EVAL-Dioden

Lehrbeispiel 2.13:

Parameter	1N 4002	1N 4148	1N 750
IS in A	14.11 n	2.682 n	0.8805 f
RS in Ω	33.89 m	566.4 m	250 m
Ν	1.984	1.836	1
CJO in F	51.17 p	4 p	175 p
TT in s	4.761 μ	11.54 n	0.1 n

DC-Analyse	
DC-Main-Sween	

Bibliotheken aus [2a]

C-Main-Sweep Variation von Modell-Parametern

* Schematics Netlist LB_2.13 *

V1	1	0	DC	1
D1	1	0	DIOD	E1
D2	1	0	DIOD	E2
D3	1	0	DIOD	E3
.MODEL	DIOI	DE1	D	(IS=2.682n N=1.836 RS=0.5664 CJO=4p TT=11.54n)
.MODEL	DIOI	DE2	D	(IS=5.364n N=1.836 RS=0.5664 CJO=4p TT=11.54n)
.MODEL	DIOI	DE3	D	(IS=1.341n N=1.836 RS=0.5664 CJO=4p TT=11.54n)
** Analysis .DC .TEMP .OP *** RESUM .probe	setup ** V1 20 TING L1	* 0.5 B_2_13.	1 cir ***	1m

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add Trace$ I(D1) I(D2) I(D3) [Strom-Spannungs-Kennlinie (I_S variabel)]

Weitere Informationen: Analysis → Examine Output (Output-File)

Test: Sat Feb 13 10:50:19 2021

Lehrbeispiel 2.14: Zweiweggleichrichtung

(Orig.: LB_2.13)

Bibliotheken aus [2a]

Transienten-Analyse (in der Netzliste zur Übung mit **Sw_tClose**)

Bild 2.108: Zweiweggleichrichtung

* Schematics Netlist LB_2.14 *

V_Up	2	0	SIN	0	15V	50Hz	0	0	0
V_Un	0	3	SIN	0	15V	50Hz	0	0	0
D_V1	2	1	D1N4	002					
D_V2	3	1	D1N4	002					
X_U1	1	4	Sw_tC	Close					
+ PARAMS: tClose=60ms ttran=1us Rclosed=1m Ropen=1G									
R_Ra	1	0	100						
C_Ca	4	0	470uF	I					
** Analysis	setup ³	**							
.TRAN	0	120n	ns 0	10us					
.TEMP	20								
.OP									
*** RESUM	1ING I	LB_2_{14}	.cir ***						
.probe									
.END									

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

Trace \rightarrow *Add Trace* V(2) V(3) und: V(1) [Zeitfunktionen u_p und u_n sowie u_a]

Weitere Informationen: Analysis → Examine Output (Output-File)

Test: Sat Feb 13 11:42:04 2021

Ende dieses Beispiels

0

Lehrbeispiel 2.15: Schaltverhalten von Dioden

(**Orig.:** LB_2.14)

-4V

1V

0

Bibliotheken aus [2a]

Transienten-Analyse

Bild 2.112: Schaltung zum Lehrbeispiel 2.15

PULSE

* Schematics Netlist LB_2.15 *

V_UP	1	0	DC	0	AC
0	0.5ns	1ns			
D_V1	1	2	MBD1	01	
D_V2	1	3	D1N41	148	
D_V3	1	4	D1N4()02	
R_Rv1	2	0	10		
R_Rv2	3	0	10		
R_Rv3	4	0	10		
** Analysis se	etup **				
.TRAN	0	1.5ns	0	0.1ps	
.TEMP	20			-	
.OP					
*** RESUMI .probe .END	NG LB	_2_15.c	cir ***		

• Aufruf von Variablen und Darstellung von Funktionen im **PROBE-Fenster** über:

$Trace \rightarrow Add Trace$	I(D V1)	I(D V2)	I(D V3)	[Stromverläufe <i>i</i> _{Dx}]
	-()	-()	-(

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

0

Bibliotheken aus [2a]
Transienten-Analyse

Bild 2.119: Simulation eines ODER-Gatters

* Schematics Netlist LB 2.16.a (ODER) * V Ux1 x1 0 DC 0 AC 0 PULSE 0V 5V 0 10n 10n 5ms 10ms V Ux2 DC PULSE 0V 5V 0 10n 10n 4ms 12ms 0 AC 0 x2 0 X VD3 Dbreak3 x1 x2 У R Ra 0 1k у ** Analysis setup ** 40ms 0 .TRAN 0 1ms .TEMP 20 .OP *** RESUMING LB_2_16_a.cir *** .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im **PROBE-Fenster** über:

Trace \rightarrow *Add Trace* V(x1) V(x2) V(y) [Zeitfunktionen $u_{x1}/u_{x2}/u_{y}$]

Weitere Informationen: Analysis → Examine Output (Output-File)

Test: Sat Feb 13 14:22:49 2021

Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure – Bauelemente … mit PSPICE – 1. Auflage, überarbeitet für E-Book, 2020

Lehrbeispiel 2.16.b: UND-Gatter

+5V V1 RU Ю V2 50k 1N4148 x2 \forall R1 л 1N4148 100 Ra R2 1k 100

(Orig.: LB_2.15)

Bild 2.121: Simulation eines UND-Gatters

* Schematics	Netlist	LB_2.1	6.b (UI	ND) *			
V_UB	1	0	5V				
V_Ux1	x1	0	DC	0	AC	0	PULSE 0V 5V 0 10n 10n 5ms 10ms
V_Ux2	x2	0	DC	0	AC	0	PULSE 0V 5V 0 10n 10n 4ms 12ms
D_V1	у	x1	D1N4	148			
D_V2	у	x2	D1N4	148			
R_R1	x1	0	100				
R_R2	x2	0	100				
R_RU	1	У	50k				
** Analysis s .TRAN .TEMP .OP	etup ** 0 20	40ms	0	0.3ms			
*** RESUMI .probe .END	NG LE	2_16_	b.cir *	**			

• Aufruf von Variablen und Darstellung von Funktionen im **PROBE-Fenster** über:

Trace $\rightarrow Add Trace$ V(x1) V(x2) V(y) [Zeitfunktionen $u_{x1}/u_{x2}/u_{y}$]

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

 Test: Sat Feb 13 14:31:16 2021
 Ende dieses Beispiels

Lehrbeispiel 2.17: Kennlinie einer Z-Diode

(Orig.: LB_2.16)

Bibliotheken aus [2a]

*

DC-Analyse / DC-Main-Sweep Variation von Modell-Parametern

Bild 2.125: Simulation der Z-Diode 1N 750

* Schematics	Netlist	LB_2.1	7.a (Kennlinie)
V Uq	1	0	-3V
D_V1	1	0	D1N750
** Analysis s	etup **		
.DC	LÎN	V_Uq	0 -5 1m
.TEMP	20		
.OP			
*** RESUM	ING LB	2 17	a.cir ***
.probe			
.END			

• Aufruf von Variablen / Darstellung im **PROBE-Fenster** über:

a) $Trace \rightarrow Add Trace$ I(D_V1) b) $Trace \rightarrow Add Trace$ I(D1) I(D2) I(D3) I(D41)

Weitere Informationen: Analysis \rightarrow Examine Output (Output-File)

* Schematics Netlist LB_2.17.b (Modell-Parameter) *					
V1	1	0	DC	0	
D1	1	0	DIOD	DE1	
D2	1	0	DIOD	DE2	
D3	1	0	DIOD	DE3	
D4	1	0	DIOD	DE4	
.MODEL	DIOD	DE1	D	(Is=880.5E-18 Rs=.25 Bv=3.3 Ibv=20.245m Nbv=1.7)	
.MODEL	DIOD	DE2	D	(Is=880.5E-18 Rs=.25 Bv=4.7 Ibv=20.245m Nbv=1.7)	
.MODEL	DIOD	DE3	D	(Is=880.5E-18 Rs=.25 Bv=6.2 Ibv=20.245m Nbv=1.7)	
.MODEL	DIOD)E4	D	(Is=880.5E-18 Rs=.25 Bv=7.5 Ibv=20.245m Nbv=1.7)	
** Analysis s	etup **	:			
.DC	V1	-8	0	1m	
.TEMP	20				
.OP					
*** RESUM	ING LE	3 2 17	b.cir *	**	
.probe			_		
.END					

Lehrbeispiel 2.18: Kapazitätsdiode

* Schematics Netlist LB_2.18 *

(Orig.: LB_2.17)

Bibliotheken aus [2a] AC-Analyse AC-Sweep Parametric-Sweep

Bild 2.133: Simulation einer Kapazitätsdiode

V_Uq L_L1 D_V1 R_Ri	a a b c	0 b c 0	AC 10mH MV22 50	1V 01	SIN	0	1V	1kHz	0	0	0
** Analysis se .AC .STEP .OP	etup ** LIN TEMP	50000 LIST	380k -50	440k -10	20	60	100				
*** RESUMING LB_2_18.cir *** .probe .END											

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add Trace$ I(D_V1) [Amplitudenfrequenzgänge des Stromes]

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

Test: Sat Feb 13 14:58:07 2021

Ende dieses Beispiels

Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure – Bauelemente … mit PSPICE – 1. Auflage, überarbeitet für E-Book, 2020

Lehrbeispiel 2.19: SCHOTTKY-Diode

1 V1 V2 MBD101 0

(Orig.: LB_2.18)

Bibliotheken aus [2a]

DC-Analyse DC-Main-Sweep

Bild 2.140: Simulation von Durchlasskennlinien

* Schematics Netlist LB 2.19 *

V_Uq D_V1 D_V2	1 1 1	0 0 0	1V MBD101 D1N4002	2
** Analysi .DC .TEMP .OP	s setup ** LIN 20	V_Uq	0 1	1m
*** RESU .probe .END	MING LE	3_2_19.0	cir ***	

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add \ Trace \qquad I(D_V1) \qquad I(D_V2) \qquad [Strom-Spannungs-Kennlinien \ der \ Dioden]$

Weitere Informationen: Analysis → Examine Output (Output-File)

Test: Sat Feb 13 15:04:17 2021

OSTFALIA

Hochschule für angewandte Wissenschaften