#### Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure – Bauelemente … mit PSPICE – 1. Auflage, überarbeitet für E-Book, 2020 OSTFALIA Hochschule für angewandte Wissenschaften

# Simulationsbeispiel 2.1: R-2R-Netzwerk



Bild 2.142: Schaltung zur Simulation der prinzipiellen Wirkungsweise eines R-2R-Netzwerkes

\* Schematics Netlist SB 2.1 \*

| V_Uq        | 1     | 0  | 32V |
|-------------|-------|----|-----|
| R_R1        | 1     | 2  | 1k  |
| R_R2        | 2     | 0  | 2k  |
| R_R3        | 2     | 3  | 1k  |
| R_R4        | 3     | 0  | 2k  |
| R_R5        | 3     | 4  | 1k  |
| R_R6        | 4     | 0  | 2k  |
| R_R7        | 4     | 5  | 1k  |
| R_R8        | 5     | 0  | 2k  |
| R_Ra        | 5     | 0  | 2k  |
| ** Analysis | setun | ** |     |

\*\* Analysis setup \*\* .TEMP 20 .OP

\*\*\* RESUMING SB\_2\_1.cir \*\*\* .probe .END

• Aufruf der Lösungen (nur bei einer gezeichneten Schaltung) über:

> Enable Bias Voltage Display < > Enable Bias Current Display <</p> [Werte der Knotenpotentiale] [Werte der Zweigströme]

Weitere Informationen (ohne Schaltung): Analysis → Examine Output (Output-File)



# Simulationsbeispiel 2.2: HF-Ersatzschaltbild des ohmschen Widerstandes



• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

*Trace*  $\rightarrow$  *Add Trace* V(1)/I(R\_RH) [Frequenzgang des Widerstandes R<sub>AB</sub>]



## Simulationsbeispiel 2.3: Transformator



| Bibliotheken aus [2a]       |
|-----------------------------|
| DC-Analyse<br>DC-Main-Sweep |

Bild 2.146: Simulationsschaltung zur Aufnahme der Magnetisierungskennlinie

\* Schematics Netlist SB\_2.3 \*

| I_Iq<br>K_TX1<br>L1_TX1<br>L2_TX1<br>R_Ra | 0 P<br>L1_TX1<br>P 0<br>S 0<br>S 0 | DC 1A<br>L2_TX1<br>10<br>0.1<br>10MEG | 1 | K528 | 8T500_3C8 |
|-------------------------------------------|------------------------------------|---------------------------------------|---|------|-----------|
| ** Analysis se<br>.DC<br>.TEMP<br>.OP     | etup **<br>LIN<br>20               | I_Iq                                  | 0 | 10   | 1m        |
| *** RESUMII<br>.probe<br>.END             | NG SB_2                            | 2_3.cir ***                           |   |      |           |

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add Trace$ B(K\_TX1)[magnetische Flussdichte]Anmerkung: Die Achsen müssen noch nachbearbeitet werden (Einheiten nach DIN).

| Ende dieses Beispiels |
|-----------------------|
|                       |



# Simulationsbeispiel 2.4: Kenngrößen einer Diode



Bibliotheken aus [2a] DC-Analyse DC-Main-Sweep

Bild 2.152: Einstellung und Kenngrößen eines Arbeitspunktes der Diode 1N 4002

Anmerkung: Mit der Netzliste wird nur die Strom-Spannungs-Kennlinie der Diode simuliert (also:  $R_i = 0$ ).

\* Schematics Netlist SB 2.4 \*

V Uq 1 0 1V D\_V1 1 0 D1N4002 \*\* Analysis setup \*\* .DC LIN V Uq -101 2 1m .TEMP 20 .OP \*\*\* RESUMING SB 2 4.cir \*\*\* .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add \ Trace \qquad I(V1) \qquad [Strom-Spannungs-Kennlinie \ der \ Diode]$ 



OSTFALIA

Hochschule für angewandte Wissenschaften

# Simulationsbeispiel 2.5: Gleichrichtung



Bild 2.155: Schaltung zur Simulation eines Brückengleichrichters

\* Schematics Netlist SB\_2.5 \*

V UP E PULSE -5V 5V 0 G 0.1ps 0.1ps 1ms 1ms D V40 Е D1N4148  $\overline{D}$  V1 Е F D1N4148  $D \ V2$ G F D1N4148 D V3 0 G D1N4148 R RM F 0 1k \*\* Analysis setup \*\* .TRAN 0 5ms 0 1u .TEMP 20 .OP \*\*\* RESUMING SB\_2\_5.cir \*\*\* .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

*Trace*  $\rightarrow$  *Add Trace* V(F) [Zeitfunktion der Spannung  $u_{\rm FH}$ ]

#### Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure – Bauelemente ... mit PSPICE – 1. Auflage, überarbeitet für E-Book, 2020 OSTFALIA Hochschule für angewandte Wissenschaften

Simulationsbeispiel 2.6.a: Extremwertgatter (Höchstwert)



Bibliotheken aus [2a]

DC-Analyse DC-Main-Sweep

Bild 2.157: Höchstwertgatter mit Eingangs- und Ausgangssignalen

\* Schematics Netlist SB\_2.6.a \*

| V_Uq1         | x1                | 0  | 5V |         |
|---------------|-------------------|----|----|---------|
| V_Uq2         | x2                | 0  | 1V |         |
| X_VD3         | x1                | x2 | у  | Dbreak3 |
| R_Ra          | у                 | 0  | 1k |         |
| ** Analysis s | etup <sup>:</sup> | ** |    |         |

.DC LIN V\_Uq2 0 10 1m .TEMP 20 .OP \*\*\* RESUMING SB\_2.6\_a.cir \*\*\* .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

*Trace*  $\rightarrow$  *Add Trace* V(x1) V(x2) V(y) [Verläufe der Spannungen]

Weitere Informationen: Analysis → Examine Output (Output-File)

Test: [5] Sat Feb 20 13:13:17 2021

**Ende dieses Beispiels** 



Simulationsbeispiel 2.6.b: Extremwertgatter (Tiefstwert)



| Bibliotheken aus [2a]       |
|-----------------------------|
| DC-Analyse<br>DC-Main-Sweep |

Bild 2.158: Simulation eines Tiefstwertgatters

\* Schematics Netlist SB 2.6.b \*

| V_UB  | 1  | 0  | 10V     |
|-------|----|----|---------|
| V_Uq1 | x1 | 0  | 5V      |
| V_Uq2 | x2 | 0  | 1V      |
| D_V1  | у  | x1 | D1N4148 |
| D_V2  | у  | x2 | D1N4148 |
| R_R1  | 1  | у  | 1k      |
| R Ra  | y  | 0  | 10k     |

\*\* Analysis setup \*\*
.DC LIN V\_Uq2 0 10 1m
.TEMP 20
.OP
\*\*\* RESUMING SB\_2\_6\_b.cir \*\*\*
.probe

.END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add \ Trace \qquad V(x1) \ V(x2) \ V(y)$ 

[Verläufe der Spannungen]

Weitere Informationen: Analysis → Examine Output (Output-File)

Test: [5] Sat Feb 20 13:16:04 2021

Ende dieses Beispiels







Bibliotheken aus [2a] DC-Analyse DC-Main-Sweep

Bild 2.160.a: Variation des Vorwiderstandes in einer Stabilisierungsschaltung mit Z-Diode

\* Schematics Netlist SB 2.7.a \*

| V Uq           | 1     | 0    | 10V        |    |    |    |   |
|----------------|-------|------|------------|----|----|----|---|
| DV1            | 0     | 2    | D1N750     |    |    |    |   |
| $R_{R1}$       | 1     | 2    | $\{RV\}$   |    |    |    |   |
| R_Ra           | 2     | 0    | 500        |    |    |    |   |
| .PARAM         | RV=   | =100 |            |    |    |    |   |
|                |       |      |            |    |    |    |   |
| ** Analysis se | tup * | **   |            |    |    |    |   |
| .DC            | LĪN   | PAR  | RAM        | RV | 10 | 1k | 1 |
| .TEMP          | 20    |      |            |    |    |    |   |
| .OP            |       |      |            |    |    |    |   |
|                |       |      |            |    |    |    |   |
| *** RESUMI     | NG S  | SB 2 | 7 a.cir ** | ** |    |    |   |
| .probe         |       |      |            |    |    |    |   |
| .END           |       |      |            |    |    |    |   |
|                |       |      |            |    |    |    |   |

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

*Trace*  $\rightarrow$  *Add Trace* V(2) [Spannungsverlauf bei Variation des Vorwiderstandes]



## Simulationsbeispiel 2.7.b: Spannungsstabilisierung (Arbeitspunkt)



Bibliotheken aus [2a]

DC-Analyse Arbeitspunkt-Analyse (Bias Point)

Bild 2.160.b: Arbeitspunkt in einer Stabilisierungsschaltung mit Z-Diode

In diesem Beispiel gilt:  $U_q = 10 \text{ V}$  und  $R_a = 500 \Omega$  sowie  $R_1 = R_V = 89 \Omega = \text{const.}$ 

\* Schematics Netlist SB\_2.7.b \*

| V_Uq      | 1 | 0       | 10V    |
|-----------|---|---------|--------|
| $D_V^1$   | 0 | 2       | D1N750 |
| R_R1      | 1 | 2       | 89     |
| R_Ra      | 2 | 0       | 500    |
| skala 1 ° |   | ale ale |        |

\*\* Analysis setup \*\* .TEMP 20 .OP

\*\*\* RESUMING SB\_2\_7\_b.cir \*\*\* .probe .END

• Aufruf der Lösungen (nur bei einer gezeichneten Schaltung) über:

| > Enable Bias Voltage Display < | [Werte der Knotenpotentiale] |
|---------------------------------|------------------------------|
| > Enable Bias Current Display < | [Werte der Zweigströme]      |

Weitere Informationen (ohne Schaltung): Analysis → Examine Output (Output-File)



\*\* Analysis setup \*\*
.AC DEC 1000 1K 10MEG
.TEMP 20
.OP
\*\*\* RESUMING SB\_2\_8.cir \*\*\*
.probe
.END

D

D

• Aufruf von Variablen und Darstellung von Funktionen im **PROBE-Fenster** über:

 $Trace \rightarrow Add \ Trace \qquad I(D1) \ I(D2) \ I(D3) \ I(D4) \qquad [Frequenzgänge des Ströme]$ 

(IS = 1.365p RS = 1 CJO = 5p)

(IS = 1.365p RS = 1 CJO = 1p)

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

.MODEL DIODE3

.MODEL DIODE4

**Ende dieses Beispiels** 



## Simulationsbeispiel 2.9: Schottky-Diode



| Bibliotheken aus [2a]       |
|-----------------------------|
| DC-Analyse<br>DC-Main-Sweep |

Bild 2.168: Nachbildung der Strom-Spannungs-Kennlinie der SCHOTTKY-Diode

\* Schematics Netlist SB 2.9 \*

V Uq 0 1V 1 V US1 2 280mV 0 D D1 1 2 Dbreak D V1 1 0 **MBD101** .MODEL Dbreak D + (IS=1e-14 CJO=.1pF RS=.1BV=4.7 IBV=10u) \*\* Analysis setup \*\* .DC LIN V\_Uq 1 1m -6 .TEMP 20 .OP \*\*\* RESUMING SB 2 9.cir \*\*\* .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

 $Trace \rightarrow Add Trace$  I(D1) I(V1) [Strom-Spannungs-Kennlinien]

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

Test: [5] Sun Feb 21 11:09:08 2021



### Simulationsbeispiel 2.10.a: Parasitäre Effekte im HF-Bereich

PARAMETERS: n 1 LR=3nH CR=0.2pF Uq AC=1V RHF {n\*50}

Bibliotheken aus [5]: model .subckt RHF-X

(NEU: 2020)

AC-Analyse AC- Sweep (Decade) Parametric-Sweep

Bild 2.171.a: Simulationsschaltungen mit Angabe der Werte der parasitären Elemente (hier: ohmscher Widerstand)

\* Schematics Netlist SB 2.10.a \*

.subckt RHF-X 1 2 params: r=50 cr=0.2p lr=3n  $r1 \ 1 \ 3 \ \{r\}$  $11 \ 2 \ 3 \ \{lr\}$  $c1 \ 12 \ \{cr\}$ .ends V Uq A DC 0 AC 1V 0 + SIN 0V 1V 100kHz 0 0 0 R RH A 1 1u X RHF 1 0 RHF-X params:  $r=\{n*50\}$  lr=3nH cr=0.2pF .PARAM n=1 \*\* Analysis setup \*\* DEC 10000 30G .AC 100MEG .STEP PARAMn LIST 2 1 .TEMP 20 .OP \*\*\* RESUMING SB 2 10 a.cir \*\*\* .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

| a) $Trace \rightarrow Add Trace$ | I(RH)         | [Frequenzgänge des Stromes]  |
|----------------------------------|---------------|------------------------------|
| b) $Trace \rightarrow Add Trace$ | V(1)/I(RH)    | [Frequenzgänge der Impedanz] |
| c) $Trace \rightarrow Add Trace$ | P(V(1)/I(RH)) | [Phasenfrequenzgänge]        |

| Test: [5] Mon Feb 22 10:03:35 2021 | Ende dieses Beispiels |
|------------------------------------|-----------------------|
|------------------------------------|-----------------------|



OSTFALIA

Hochschule für angewandte Wissenschaften

(NEU: 2020)

# Simulationsbeispiel 2.10.b: Parasitäre Effekte im HF-Bereich



Bibliotheken aus [5]: model .subckt CHF-X

AC-Analyse AC- Sweep (Decade) Parametric-Sweep

Bild 2.171.b: Simulationsschaltungen mit Angabe der Werte der parasitären Elemente (hier: Kondensator)

\* Schematics Netlist SB 2.10.b \*

```
.subckt CHF-X 1 2 params: c=1n lc=3n rc=0.2
c1 \ 1 \ 3 \ \{c\}
11 3 4 \{lc\}
r1 \ 42 \ \{rc\}
rd1 1 2 1e12
.ends
V Uq
                    0
                          DC
                                 0
                                       AC
                                              1V
             А
+ SIN 0V 1V 100kHz 0 0 0
R RH
             А
                    1
                          1u
X CHF
                    0
                          CHF-X params: c=\{n*100pF\}\ lc=3nH\ rc=0.2
             1
.PARAM
             n=1
** Analysis setup **
     DEC 10000 1MEG
.AC
                                 100G
                          LIST 0.1
                                       1
STEP PARAM
                    n
.TEMP
             20
.OP
*** RESUMING SB 2 10 b.cir ***
.probe
.END
```

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

| a) $Trace \rightarrow Add Trace$ | I(RH)         | [Frequenzgänge des Stromes]  |
|----------------------------------|---------------|------------------------------|
| b) $Trace \rightarrow Add Trace$ | V(1)/I(RH)    | [Frequenzgänge der Impedanz] |
| c) Trace $\rightarrow$ Add Trace | P(V(1)/I(RH)) | [Phasenfrequenzgänge]        |



### Simulationsbeispiel 2.10.c: Parasitäre Effekte im HF-Bereich



Bibliotheken aus [5]: model .subckt LHF-X

AC-Analyse AC- Sweep (Decade) Parametric-Sweep

Bild 2.171.c: Simulationsschaltungen mit Angabe der Werte der parasitären Elemente (hier: Spule)

\* Schematics Netlist SB\_2.10.c \*

.subckt LHF-X 1 2 params: l=100n cl=0.2p krl=1.2e-4 11 1 3 {1} g1 2 3 laplace { v(2,3) } = { 1/(krl\*sqrt(1+0.31831\*s)) }  $c1 \ 12 \ \{cl\}$ rd1 1 2 1e12 .ends V Uq DC 0 AC 1VА 0 + SIN 0V 1V 100kHz 0 0 0 R RH 1u А 1 X LHF 0 LHF-X params:  $l=\{n*100nH\}$  cl=0.2pF krl= $\{1200*\{n*100nH\}\}$ 1 .PARAM n=1 \*\* Analysis setup \*\* DEC 10000 10k .AC 30G **.STEP PARAM** LIST 1 10 n .TEMP 20 .OP \*\*\* RESUMING SB 2 10 c.cir \*\*\* .probe .END

• Aufruf von Variablen und Darstellung von Funktionen im PROBE-Fenster über:

| a) $Trace \rightarrow Add Trace$ | I(RH)         | [Frequenzgänge des Stromes]  |
|----------------------------------|---------------|------------------------------|
| b) Trace $\rightarrow$ Add Trace | V(1)/I(RH)    | [Frequenzgänge der Impedanz] |
| c) Trace $\rightarrow Add$ Trace | P(V(1)/I(RH)) | [Phasenfrequenzgänge]        |

Weitere Informationen: *Analysis* → *Examine Output* (Output-File)

(NEU: 2020)