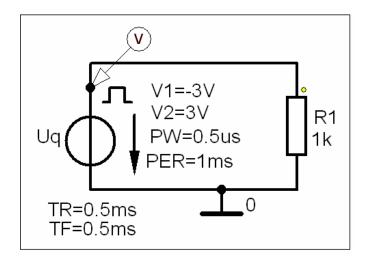
Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure – Grundlagen – 4. Auflage, 2008


Probe zur Lösung der Berechnungsbeispiele BB_13.x:

Allgemeine Hinweise:

Eine zusätzliche Simulation ausgewählter Schaltungen der BB 13.x mit **PSPICE** soll eine weitere Kontrolle der Lösungen ermöglichen. Der Bearbeiter der Berechnungsbeispiele erhält dabei Anregungen, die Beispiele (<u>nach</u> dem Durchrechnen) mit einer Simulation nachzuvollziehen.

Zur Simulation wurde die Quelle VSIN verwendet. Mit der Transienten-Analyse werden die gewünschten Zeitfunktionen dargestellt. Durch Umschalten mit > Trace < → > Fourier < wird zusätzlich die spektrale Darstellung aufgerufen. Dazu muss der Analyse-Zeitraum "Final Time" im *Setup-Analysis*-Fenster unter > Transient ... < auf genau die Dauer einer vollständigen Periode (oder eines ganzzahligen Vielfachen davon) eingestellt werden (vgl. [14] – Abschn. 1.3.2). Die im Ergebnis der FOURIER-Analyse ermittelten Daten findet man im Output-File (Bedeutung: siehe [Beispiel]).

Output – File: FOURIER COMPONENTS OF TRANSIENT RESPONSE V(\$N 0001) [Beispiel] DC COMPONENT = 2.994013E-03 $[U_0 = 3 \text{ mV}]$ HARM. FREQUENCY FOURIER NORMALIZED PHASE **NORMALIZED** COMPONENT COMPONENT NO PHASE (DEG) (HZ)(DEG) 1.000E+03 2.432E+00 1.000E+00 -9.009E+01 0.000E+00 $[f_n = 1 \text{ kHz}] \quad [\hat{U}_n = 2.43 \text{ V}] \quad [\hat{U}_n / \hat{U}_1 = 1] \quad [\varphi_n = -90^\circ] \quad [\varphi_n + \Delta \varphi = 0]$ [n = 1]TOTAL HARMONIC DISTORTION = 1.210746E+01 PERCENT [THD = 12,1 %]

Beachte:

Je größer der Analysezeitraum t_A (mit einem ganzzahligen T), desto genauer wird das Ergebnis der FFT-Analyse. Der Rechenaufwand steigt dabei an.

Bild 13.0: Einstellung der Quelle VPULSE zur Erzeugung einer symmetrischen Dreieck-Impulsfolge

LB 13.1: Sinusförmige Wechselspannung

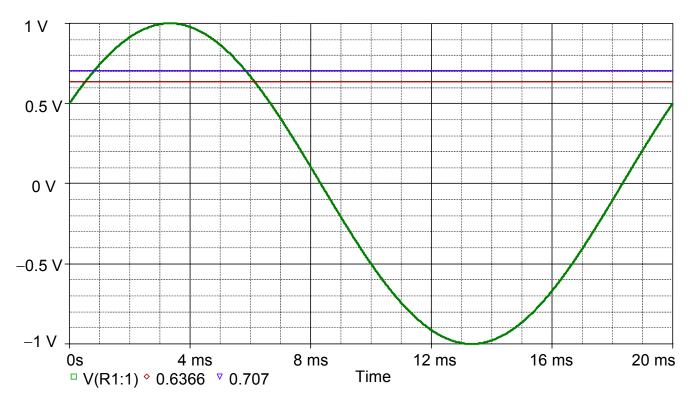


Bild LB 13.1_1: Zeitfunktion zum LB 13.1

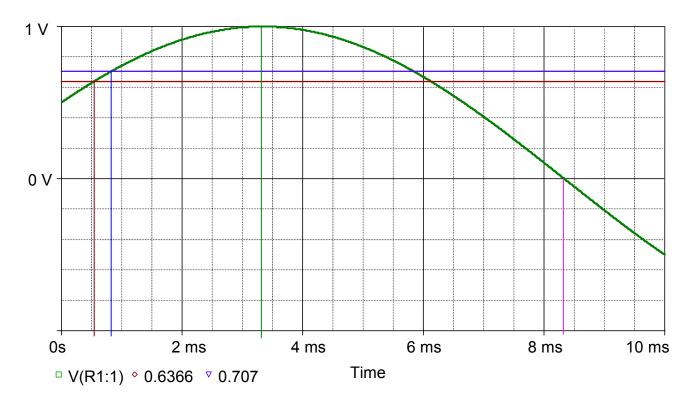


Bild LB 13.1_2: Auszug aus der Zeitfunktion des Bildes LB 13.1_1

• Ergebnisse:

$$t_{\rm a}(u=|\overline{U}|)\approx 530~\mu{\rm s}$$
 $t_{\rm b}(u=U_{\rm eff})\approx 830~\mu{\rm s}$ $t_{\rm c}(u=\hat{U})\approx 3.3~{\rm ms}$ $t_{\rm d}(u=0)\approx 8.3~{\rm ms}$

BB 13.1: Symmetrische Dreieck-Impulsfolge

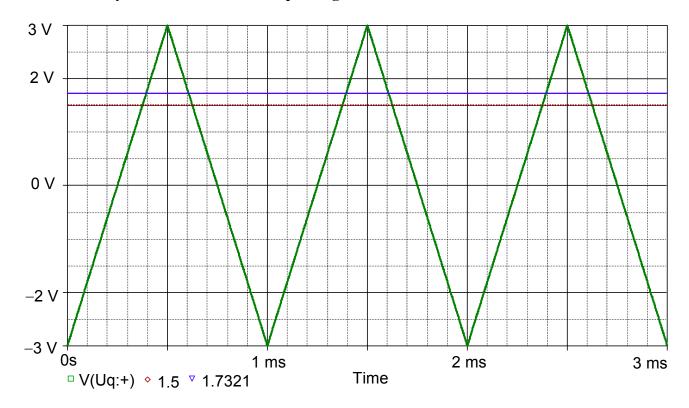


Bild BB 13.1_1: Zeitfunktion zum BB 13.1 (Rot: Gleichrichtwert; Blau: Effektivwert)

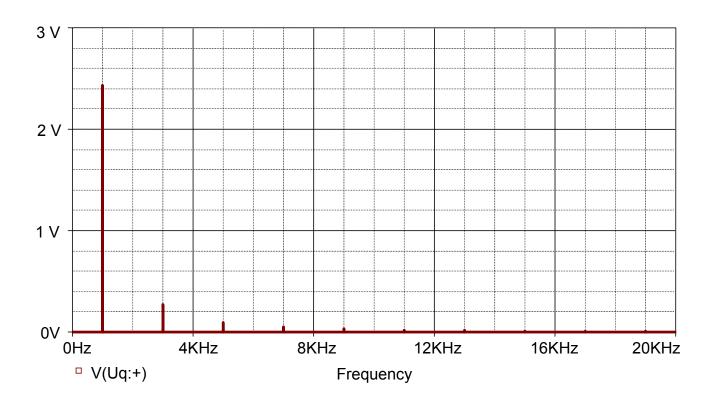


Bild BB 13.1_2: Amplitudenspektrum zum BB 13.1

• Ergebnisse der FOURIER-Analyse $(0 \le t_A \le 300 \ T)$ zum BB 13.1:

Output – File:

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(\$N_0001)

DC COMPONENT = 4.621792E-04

HARM.	FREQUENCY	FOURIER	NORMALIZED	PHASE	NORMALIZED
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)
1	1.000E+03	2.431E+00	1.000E+00	-9.026E+01	0.000E+00
2	2.000E+03	7.317E-04	3.010E-04	1.258E+01	1.931E+02
3	3.000E+03	2.700E-01	1.111E - 01	-9.074E+01	1.800E+02
4	4.000E+03	4.352E-04	1.790E-04	-1.242E+01	3.486E+02
5	5.000E+03	9.715E-02	3.997E-02	-9.133E+01	3.600E+02
6	6.000E+03	3.642E-04	1.498E-04	1.025E+01	5.518E+02
7	7.000E+03	4.964E-02	2.042E-02	-9.179E+01	5.400E+02
8	8.000E+03	1.697E-04	6.982E-05	1.861E+01	7.407E+02
9	9.000E+03	2.985E-02	1.228E-02	-9.226E+01	7.201E+02
10	1.000E+04	3.972E-04	1.634E-04	1.161E+00	9.038E+02
11	1.100E+04	2.024E-02	8.327E-03	-9.284E+01	9.000E+02
12	1.200E+04	1.645E-04	6.769E-05	2.356E+01	1.107E+03
13	1.300E+04	1.447E-02	5.953E-03	-9.311E+01	1.080E+03
14	1.400E+04	7.589E-05	3.122E-05	8.101E+00	1.272E+03
15	1.500E+04	1.081E-02	4.447E-03	-9.365E+01	1.260E+03
16	1.600E+04	1.181E-04	4.857E-05	-5.849E+00	1.438E+03
17	1.700E+04	8.451E-03	3.477E-03	-9.434E+01	1.440E+03
18	1.800E+04	1.005E-04	4.135E-05	1.099E+01	1.636E+03
19	1.900E+04	6.816E-03	2.804E-03	-9.453E+01	1.620E+03
20	2.000E+04	4.177E-05	1.718E-05	-1.366E+02	1.669E+03

TOTAL HARMONIC DISTORTION = 1.210200E+01 PERCENT

• Resultierende Ergebnisse:

$$U_0 = 462 \text{ }\mu\text{V} \approx 0$$

 $THD = 12,1 \%$
 $k = 12,02 \%$ (Berechnung siehe Anhang)

Anmerkung:

Der von PSPICE angegebene Wert für die "Harmonische Störung" (Total Harmonic Distortion – *THD*) entspricht nicht dem Klirrfaktor. *THD* gibt das Verhältnis des Effektivwertes der Oberwellen zum Effektivwert der Grundwelle an (nähere Erläuterungen – siehe Anhang).

$$THD_{\%} = \frac{\sqrt{U_2^2 + U_3^2 + U_4^2 + \dots + U_m^2}}{U_1} \cdot 100\%$$
 (13.21)

BB 13.2: Sägezahn-Impulsfolge

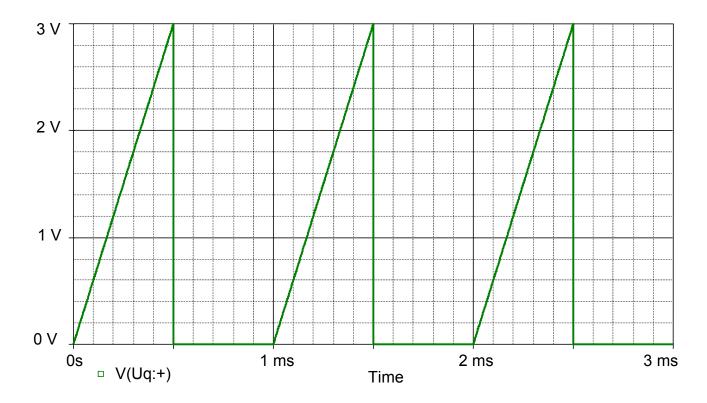


Bild BB 13.2_1: Zeitfunktion zum BB 13.2

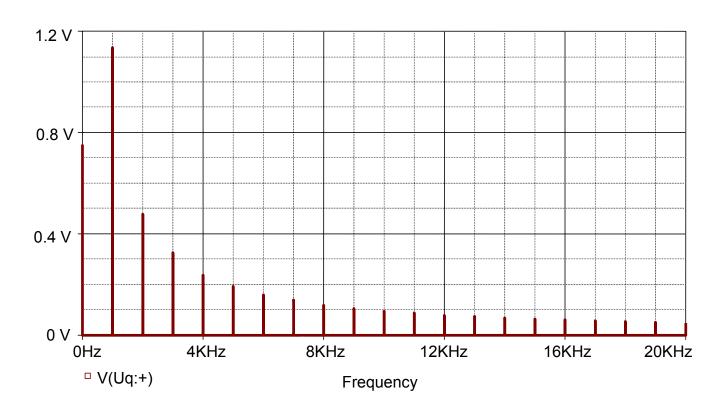


Bild BB 13.2_2: Amplitudenspektrum zum BB 13.2

• Ergebnisse der FOURIER-Analyse $(0 \le t_A \le 300 \ T)$ zum BB 13.2:

Output – File:

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(\$N_0001)

DC COMPONENT = 7.521820E-01

HARM.	FREQUENCY	FOURIER	NORMALIZED	PHASE	NORMALIZED
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)
1	1.000E+03	1.134E+00	1.000E+00	-3.285E+01	0.000E+00
2	2.000E+03	4.775E-01	4.209E-01	1.791E+02	2.448E+02
3	3.000E+03	3.263E-01	2.876E-01	-1.326E+01	8.527E+01
4	4.000E+03	2.387E-01	2.105E-01	1.782E+02	3.096E+02
5	5.000E+03	1.931E-01	1.702E-01	-9.430E+00	1.548E+02
6	6.000E+03	1.591E-01	1.403E-01	1.774E+02	3.744E+02
7	7.000E+03	1.374E-01	1.211E-01	-8.255E+00	2.217E+02
8	8.000E+03	1.194E-01	1.052E-01	1.765E+02	4.393E+02
9	9.000E+03	1.067E-01	9.402E-02	-7.986E+00	2.876E+02
10	1.000E+04	9.547E-02	8.417E-02	1.756E+02	5.041E+02
11	1.100E+04	8.718E-02	7.686E-02	-8.132E+00	3.532E+02
12	1.200E+04	7.955E-02	7.013E-02	1.747E+02	5.689E+02
13	1.300E+04	7.373E-02	6.500E-02	-8.503E+00	4.185E+02
14	1.400E+04	6.818E-02	6.010E-02	1.738E+02	6.337E+02
15	1.500E+04	6.387E-02	5.631E-02	-9.009E+00	4.837E+02
16	1.600E+04	5.965E-02	5.258E-02	1.730E+02	6.985E+02
17	1.700E+04	5.634E-02	4.966E-02	-9.602E+00	5.488E+02
18	1.800E+04	5.301E-02	4.673E-02	1.721E+02	7.633E+02
19	1.900E+04	5.039E-02	4.442E-02	-1.026E+01	6.138E+02
20	2.000E+04	4.770E-02	4.205E-02	1.712E+02	8.281E+02

TOTAL HARMONIC DISTORTION = 6.538341E+01 PERCENT

• Resultierende Ergebnisse:

 $U_0 = 752.2 \text{ mV}$ THD = 65.4 %k = 54.74 % (Berechnung siehe Anhang)

Anhang: Unterschied zwischen Klirrfaktor k und THD

• Klirrfaktor:

Der Klirrfaktor k ist definiert als das Verhältnis des Effektivwertes der Oberwellen zum Gesamteffektivwert

$$k = \sqrt{\frac{U_2^2 + U_3^2 + U_4^2 + \dots + U_m^2}{U_1^2 + U_2^2 + U_3^2 + U_4^2 + \dots + U_m^2}} = \frac{\sqrt{U_2^2 + U_3^2 + U_4^2 + \dots + U_m^2}}{U_{\text{eff}}}$$
 Es gilt: $k \le 1$

• Total Harmonic Distortion *THD* (Harmonische Störung oder Verzerrungsfaktor):

Die THD ist definiert als das Verhältnis des Effektivwertes der Oberwellen zum Effektivwert der Grundwelle. Die in die Berechnung einbezogene Anzahl der Harmonischen wird häufig auf n = 40 begrenzt.

$$THD_{\%} = \frac{\sqrt{U_2^2 + U_3^2 + U_4^2 + \dots + U_m^2}}{U_1} \cdot 100\%$$
 (13.21)

Die THD kann auch Werte über 100 % annehmen.

Das nachfolgende Beispiel soll den Unterschied zwischen den beiden Kenngrößen verdeutlichen. Dabei handelt es sich um eine Überlagerung von vier Harmonischen gemäß [14] – Lehrbeispiel 1.7.

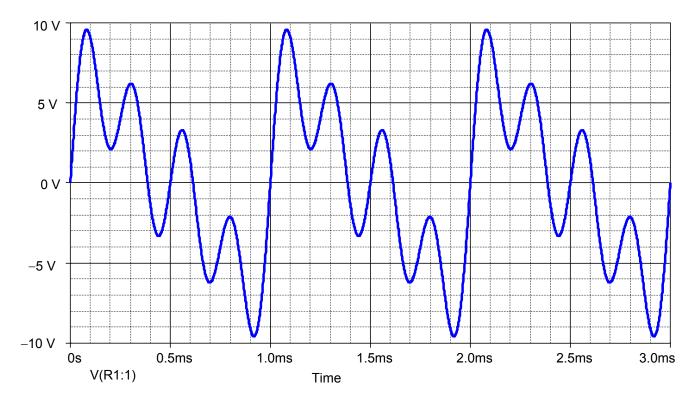


Bild Anhang 13 1: Zeitfunktion zum LB 1.7 in [14]

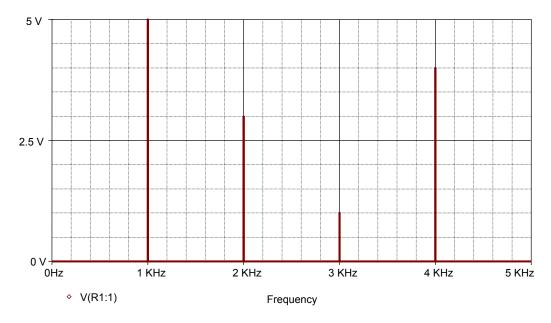


Bild Anhang_13_2: Amplitudenspektrum zum LB 1.7 in [14]

Output – File	e: FOUR	IER COMPONI	ENTS OF TRANS	IENT RESPONS	SE V(\$N_0003)		
DC COMPONENT = 1.825998E-04							
HARMONIC	FREQUENCY	FOURIER	NORMALIZED	PHASE	NORMALIZED		
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)		
		(Maximalwerte)	$\{U_{ m n}\}$				
1	1.000E+03	5.000E+00	1.000E+00	-3.073E-01	0.000E+00		
2	2.000E+03	3.000E+00	6.000E-01	-6.159E-01	-1.395E-03		
3	3.000E+03	1.000E+00	2.000E-01	-9.134E-01	8.366E-03		
4	4.000E+03	4.000E+00	7.999E-01	-1.241E+00	-1.151E-02		
5	5.000E+03	6.794E-04	1.359E-04	1.459E+02	1.475E+02		
TOTAL HARMONIC DISTORTION = 1.019739E+02 PERCENT (über 100 % !!!)							

Die *THD* kann mit Gleich. (13.21) wie folgt aus den Daten des Output-Files berechnet werden:

$$THD_{\%} = \frac{\sqrt{U_2^2 + U_3^2 + U_4^2 + ... + U_m^2}}{U_1} \cdot 100\% \quad \text{mit:} \quad \{U_n\} = \frac{U_n}{U_1} \text{ (NORMALIZED COMPONENT)}$$

$$THD_{\%} = \sqrt{\{U_2\}^2 + \{U_3\}^2 + \{U_4\}^2 + ... + \{U_m\}^2} \cdot 100\%$$

$$THD_{\%} = \sqrt{0.6^2 + 0.2^2 + 0.8^2 + (0.136 \cdot 10^{-3})^2} \cdot 100\% = \sqrt{1.04} \cdot 100\% = 101.98\%$$

Daraus folgt für den Klirrfaktor nach Gleich. (13.20):

$$k = \frac{\sqrt{U_2^2 + U_3^2 + U_4^2 + \dots + U_m^2}}{U_{\text{eff}}} \text{ bzw.: } \sqrt{U_2^2 + U_3^2 + U_4^2 + \dots + U_m^2} = k \cdot U_{\text{eff}} \implies THD = \frac{k \cdot U_{\text{eff}}}{U_1}$$

$$k_{\%} = THD_{\%} \cdot \frac{U_1}{U_{\text{eff}}} = \frac{THD_{\%}}{\{U_{\text{eff}}\}} = \frac{101,98\%}{\sqrt{1^2 + 0,6^2 + 0,2^2 + 0,8^2 + \dots}} = \frac{101,98\%}{\sqrt{2,04}} = 71,4\%$$