

Probe zur Lösung der Berechnungsbeispiele BB_15.x:

Allgemeine Hinweise:

Eine zusätzliche Simulation ausgewählter Schaltungen der BB 15.x mit **PSPICE** soll eine weitere Kontrolle der Lösungen ermöglichen und den Bearbeiter der Berechnungsbeispiele (<u>nach</u> dem Durchrechnen) zum Nachvollziehen dieser Simulationsergebnisse anregen.

Zur Simulation der BB 15.x wurde die Quelle VSIN verwendet. Dieser Sinusgenerator ist AC-Sweepfähig, so dass die Messgeräte AC-Ameter und AC-Vmeter eingesetzt werden können. Die im Ergebnis der Simulation ermittelten Messwerte findet man im Output-File oder unter > watch < im PROBE-Fenster.

Zur Darstellung von Frequenzgängen und Ortskurven kann zusätzlich die Funktionsdarstellung im PROBE-Fenster aufgerufen werden. Bei gleichzeitigem Einsatz der AC-A/Vmeter findet man alle Daten, die PSPICE zur Funktionsdarstellung der gemessenen Größen verwendet, im Output-File.

Um die ständige Umrechnung zwischen Maximalwert und Effektivwert zu vermeiden, wurden der Maximalwert ($U_{q,max} = \hat{U}_q$) der Quellenspannung als Effektivwert ($U_{q,ers}$) ausgeführt. Damit können die im Output-File angegebenen Messwerte der simulierten Spannungen und Ströme als Effektivwerte aufgefasst werden (siehe Bild 15.0).

Bild 15.0: Einstellung der Quelle VSIN bzw. ISIN zur Ermittlung der folgenden Simulationsergebnisse

Anmerkung:

Die Lehrbeispiele des Kapitels 15 und die Berechnungsbeispiele BB 15.1, BB 15.3 sowie BB 15.7 und 15.8 sind infolge der geforderten allgemeinen Lösung nicht für eine Simulation geeignet!

BB 15.2: Zeigerbild und Ortskurve

a) AC-Sweep:
1 Pts/Decade StartFreq.: 1kHz EndFreq.: 1kHz
b) AC-Sweep: 5000 Pts/Decade StartFreq.: 10Hz EndFreq.: 10MHz

Bild BB 15.2_1: Simulationsschaltung zum BB 15.2

a) Komplexer Leitwert bei einer festen Betriebsfrequenz:

 $f_{\rm B}$ (gewählt) = 1 kHz

Output – Fi	le:	Bedeutung:	
FREQ	VM(Uq,0)	VP(Uq,0)	$\frac{U_{\text{ges}}}{5,97} \text{ V }; \ \angle +9,2^{\circ}$
1.000E+03	5.967E+00	9.245E+00	

$$\underline{Y} = \frac{\underline{I}}{\underline{U}_{ges}} = \frac{100 \text{ mA} \cdot e^{j0}}{5,967 \text{ V} \cdot e^{j9,2^{\circ}}} = 16,76 \text{ mS} \cdot e^{-j9,2^{\circ}}$$

b) Ortskurve des komplexen Leitwertes:

Bild BB 15.2_2: Ortskurve zum BB 15.2

BB 15.4: Ortskurve des komplexen Widerstandes und Leitwertes

Bild BB 15.4_2: Ortskurve des komplexen Widerstandes

Bild BB 15.4_3: Ortskurve des komplexen Leitwertes

BB 15.5: Komplexer Lastzweipol 1

Bild BB 15.5_1: Simulationsschaltung zum BB 15.5

BEACHTE:

PSPICE gibt alle Winkel im Watch-Fenster relativ zur eingespeisten Größe (hier: \underline{U}_q mit 0°) an. Der bei \underline{U}_q festgelegte Winkel (PHASE=30°) ist nur bei der Transienten-Analyse wirksam !

Korrekturmaßnahme:

1) Zu allen Nullphasenwinkeln der Spannungen (Watch) ist der Nullphasenwinkel der eingespeisten Spannung \underline{U}_q zu addieren.

2) Zu allen Nullphasenwinkeln der Ströme (Watch) ist je nach Polarität des Ameter der Nullphasenwinkel der eingespeisten Spannung zu addieren oder zu subtrahieren.

(Hier: Teilströme ... PHASE(Uq) addieren

Gesamtstrom ... PHASE(\underline{U}_q) addieren) 3) Der resultierende Phasenwinkel von Z stimmt wieder!

Output – Fil	e:		Bedeutung:
FREQ	VM(VM2,0)	VP(VM2,0)	$rac{U_{ m ges}}{12 \ m V} \ ; \ \angle \ 0^{\circ}$
1.000E+03	1.200E+01	0.000E+00	
FREQ	IM(V_Ameter2)	IP(V_Ameter2)	<u>I</u> ges
1.000E+03	1.698E-02	-4.492E+01	16,98 mA ; ∠ –45°
FREQ	VM(VM1,0)	VP(VM1,0)	<u>U</u> L2
1.000E+03	1.696E+01	4.508E+01	16,96 V ; ∠+45°
FREQ	IM(V_Ameter1)	IP(V_Ameter1)	$\frac{I_{\rm C3}}{12 \text{ mA}}$; $\angle 0,1^{\circ}$
1.000E+03	1.200E-02	1.116E-01	

$$\underline{I}_{\text{ges}} = 16,98 \text{ mA} \cdot e^{j(-45^\circ + 30^\circ)} = 16,98 \text{ mA} \cdot e^{-j15^\circ}$$

$$\underline{Z} = \frac{\underline{U}_{\text{ges}}}{\underline{I}_{\text{ges}}} = \frac{12 \text{ V} \cdot e^{j30^{\circ}}}{16,98 \text{ mA} \cdot e^{-j15^{\circ}}} = 707 \ \Omega \cdot e^{j45^{\circ}} = 500 \ \Omega + j500 \ \Omega$$

$$I_{C2} = 12 \text{ mA} \cdot e^{j(0^\circ + 30^\circ)} = 12 \text{ mA} \cdot e^{j30^\circ}$$

$$\underline{U}_{L2} = 16,96 \text{ V} \cdot e^{j(45^\circ + 30^\circ)} = 16,96 \text{ V} \cdot e^{j75^\circ}$$

BB 15.6: Komplexer Lastzweipol 2

Bild BB 15.6_1	: Simulationsschaltung zum BB	15.6
----------------	-------------------------------	------

Output – Fil	e:	Bedeutung:	
FREQ	IM(V_Ameter1)	IP(V_Ameter1)	$\frac{I_1}{107}$ mA ; $\angle -63^{\circ}$
1.000E+03	1.073E-01	-6.343E+01	
FREQ	VM(VM1,2)	VP(VM1,2)	<u>U</u> 1
1.000E+03	2.147E+01	2.657E+01	21,47 V ; ∠ +27°
FREQ	VM(VM2,0)	VP(VM2,0)	$\frac{U_2}{10,73}$ V ; $\angle -63^{\circ}$
1.000E+03	1.073E+01	-6.343E+01	
FREQ	IM(V_Ameter2)	IP(V_Ameter2)	$\frac{I_3}{240} \text{ mA ; } \angle 0^\circ$
1.000E+03	2.400E-01	0.000E+00	
FREQ	IM(V_Ameter3)	IP(V_Ameter3)	<u>I</u> ₄
1.000E+03	2.146E-01	2.659E+01	215 mA ; ∠+27°
FREQ	VM(VM5,0)	VP(VM5,0)	<u>U</u> 5
1.000E+03	1.074E+01	-6.341E+01	10,74 V ; ∠ −63°

 $\underline{U}_1 = 21,47 \text{ V} \cdot \text{e}^{j27^\circ}$

$$\frac{\underline{U}_2}{\underline{U}_5} = \frac{10,73 \text{ V} \cdot \text{e}^{-j63^\circ}}{10,74 \text{ V} \cdot \text{e}^{-j63^\circ}} \approx 1 \cdot \text{e}^{j0^\circ}$$
$$\underline{I}_4 = 215 \text{ mA} \cdot \text{e}^{j27^\circ} = 192 \text{ mA} + j98 \text{ mA}$$
$$\frac{\underline{I}_3}{\underline{I}_2} = \frac{240 \text{ mA} \cdot \text{e}^{j0^\circ}}{107 \text{ mA} \cdot \text{e}^{-j63^\circ}} = 2,24 \cdot \text{e}^{j63^\circ}$$

BB 15.9: Spezielle Ortskurven

Bild BB 15.9_1: Simulationsschaltungen zum BB 15.9 (links: Ortskurve <u>l</u>2 und rechts: Ortskurve <u>Z</u>)

Bild BB 15.9_2: Ortskurve für den Teilstrom I2

Bild BB 15.9_3: Ortskurve des komplexen Widerstandes Z