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Abstract: Limitations in the human decision-making process restrict the technological potential of al-
gorithms, which is also referred to as "algorithm aversion.” This study uses a laboratory experiment 
with test subjects to investigate whether a phenomenon known since 1982 as the "decoy effect" is 
suitable for reducing algorithm aversion. For numerous analog products, such as cars, drinks, or news-
paper subscriptions, the decoy effect is known to have an immense influence on human decision-mak-
ing behavior. Surprisingly, the decisions between forecasts by humans and robo-advisors (algorithms) 
investigated in this study are not affected by the decoy effect at all. This is true both a priori and after 
observing forecast errors. 
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1. Introduction 

Considerable progress in the field of artificial intelligence (AI) is currently paving the way for numerous 
promising business models. However, many people have reservations about the automated processes 
they rely on. These reservations are also referred to as "algorithm aversion.”1  

Algorithms or AI that work with stochastic processes cannot make exclusively accurate predictions, 
e.g., about the development of capital markets. As soon as users realize this, they often distrust the 
technology and refrain from using it (Dietvorst, Simmons & Massey, 2015). This problem also occurs 
when users must decide whether to trust an algorithm or their own judgment. Many users tend to 
trust themselves even when there is clear evidence that they are unlikely to make better predictions 
than an algorithm in the long run. 

Algorithm aversion means that promising technologies do not succeed in the market as one would 
expect, given their performance and cost advantages. In finance, for example, many users find it diffi-
cult to develop trust in automated asset managers, so-called "robo-advisors," even though their use 
can help avoid costly mistakes (Back, Morana & Spann, 2021). To mitigate this issue, measures to re-
duce algorithm aversion need to be identified and taken. 

An experimental study focusing on this topic investigates what happens when users are given the pos-
sibility to manipulate an algorithm’s output. Dietvorst, Simmons & Massey (2018) give some subjects 
the ability to adjust an algorithm's predictions downward or upward by a few percent in post-pro-
cessing. This ability to influence an algorithm significantly increases willingness to use. Interestingly, 
the effect occurs even when the opportunities for adjustment are kept low. The article suggests that 
algorithm aversion can be mitigated by giving people opportunities to influence the algorithm's pre-
dictions, even if only to a limited extent (Dietvorst, Simmons & Massey, 2018). 

Other studies have identified shortening response times (Efendić, Van de Calseyde & Evans, 2020) or 
making the algorithm take into account the predictions of knowledgeable humans (Kawaguchi, 2021), 
among others, as measures by which algorithm aversion can be reduced. In addition, a more precise 
representation of the algorithmic output, e.g., by adding additional decimal places (Kim, Giroux & Lee, 
2021) or providing information about the procedure and accuracy of an algorithm (Ben David, Resheff 
& Tron, 2021) also seem to be suitable for this purpose. 

However, the listed measures reduce algorithm aversion only to a limited extent. Moreover, many of 
them include the risk that the prediction quality of the algorithm decreases after human influence (cf. 
Kawaguchi, 2021; Dietvorst, Simmons & Massey, 2018). Consequently, it remains an important re-
search task to uncover effective ways to reduce algorithm aversion that do not involve degradation of 
the algorithm's prediction quality. 

Therefore, this study takes up an idea of Huber, Payne & Puto (1982), who studied the human decision-
making process under uncertainty using economic experiments. Their study shows that the possibility 
of comparing multiple options can massively influence the human decision-making process. Under cer-
tain circumstances, an option finds significantly greater appeal if a comparable but recognizably infe-
rior option is added. This phenomenon is also known as the "decoy effect" (see chapter 2.1). In 

 
1 For a detailed review of the literature on algorithm aversion, see e.g. Mahmud et al. (2022), Burton, Stein & 
Jensen (2020), or Jussupow, Benbasat & Heinzl (2020). 
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numerous replications, the decoy effect has been shown to cause subjects to change their decision 
behavior when choosing between different consumer goods (Ariely & Wallsten, 1995), services (Park 
& Kim, 2005), and even lotteries (Kroll & Vogt, 2012; Herne, 1999). These findings suggest that the 
decoy effect may have an impact on other decision-making situations as well. 

In previous studies on algorithm aversion, decision makers were usually provided with only one algo-
rithm, which they could either rely on or refrain from using (e.g., Dietvorst, Simmons & Massey, 2015). 
As technology advances, the transferability of this experimental design to practice decreases. In fact, 
in practice we can already choose between several algorithms that differ in their performance for many 
tasks, not least asset management.  

The possibility to choose between several algorithms could lead to a decoy effect whenever one algo-
rithm is obviously better than another in at least one criterion and not worse than that same algorithm 
in any other criterion. In this case, the objectively superior algorithm would gain additional attractive-
ness from the user's point of view, even compared to alternative methods in which no algorithm is 
used. 

The great advantage of this approach over measures already identified for reducing algorithm aversion 
is that the superior algorithm would not have to be manipulated at all. This means that the willingness 
of decision makers to use the algorithm could be increased without having to compromise the perfor-
mance or user-friendliness of the algorithm. Therefore, in this study, an economic experiment will be 
conducted to investigate whether the decoy effect can be used to reduce algorithm aversion. The in-
fluence of the decoy effect on the willingness to use an algorithm is investigated both from the outset 
and after observing errors in the algorithm. 

 

2. Literature Overview 

2.1 Decoy Effect 

The decoy effect (or asymmetric dominance effect) was first discovered about 40 years ago. In an eco-
nomic experiment, Huber, Payne & Puto (1982) let 150 students choose between different cars, res-
taurants, types of beer, lotteries, movies, and TVs. They found that the addition of a so-called decoy, 
which is comparable to and clearly inferior to the offer referred to as the target, can lead to the target 
being selected significantly more often than a third option, the so-called competitor. 

The decoy effect is illustrated by Ariely (2009) using the example of subscription offers of the magazine 
"The Economist." The author divides 200 students into two groups (conditions) and asks them each to 
estimate which newspaper subscription they would choose if they had to decide between several of-
fers. In the first condition (control), students can choose between the "Digital" ($59) and "Print + Dig-
ital" ($125) offers. It turns out that 68 students prefer the "Digital" offer and the remaining 32 study 
participants prefer the "Print + Digital" offer. If these 100 students actually took out the subscriptions, 
this would result in total revenue of $8,012 for The Economist (see Table 1). 
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Table 1: Distribution in the control group in Ariely (2009) 

Offer Digital Print + Digital 
Price $59 $125 
Number of buyers 68 32 
Volume of sales per offer $4,012 $4,000 
Total volume of sales $8,012 

 
 

In the second condition (decoy), the offer "Print" ($125) is added to the already known offers "Digital" 
($59) and "Print + Digital" ($125). Although the "Print" offer is not selected even once, it has a massive 
influence on the theoretically achieved sales of "The Economist." In the second group, only 16 students 
choose the "Digital" offer, while 84 students prefer the "Print + Digital" offer. The total revenue would 
now be $11,444 (see Table 2). 

 

Table 2: Distribution under the influence of the decoy effect in Ariely (2009) 

Offer Digital Print + Digital Print 
Price $59 $125 $125 
Number of buyers 16 84 0 
Volume of sales per offer $944 $10,500 $0 
Total volume of sales $11,444 

 
 

The "Print" offer is added in the second condition to steer decision-making behavior towards the "Print 
+ Digital" offer. In this context, it is therefore referred to as the decoy, while the "Print + Digital" offer, 
which gains in popularity after the decoy is added, is called the target. The "Digital" offer is in turn the 
competitor of "Print.” In this context, the target is also said to asymmetrically dominate the decoy.  

Ariely attributes the massive differences in choice behavior between the "Digital" and "Digital + Print" 
offers to the addition of the decoy "Print." In the first condition, students had to compare two options 
in which each choice offered a distinct advantage. The name of the "Print + Digital" option already 
suggests that this option offers additional consumption possibilities. However, it is obviously inferior 
to the "Digital" option in terms of price. The individual has to infer whether the added value in the 
"consumption possibilities" dimension of the "Print + Digital" option should be rated higher than the 
added value in the "price" dimension of the "Digital" option. Accordingly, the results of consumer pref-
erences vary. 

In the second condition, the comparability of the "Print + Digital" and "Print" offers leads the subjects 
to apply a heuristic. Although here, too, all decisions are exclusively in favor of the "Digital" and "Print 
+ Digital" options, subjects replace the question of which of the two options is advantageous with a 
comparison of the "Print + Digital" and "Print" options. At the same price, the target "Print + Digital" 
clearly offers more consumption possibilities than the decoy "Print.” Since the target is clearly superior 
to the decoy, its appeal is seemingly enhanced, and this also compared to the competitor "Digital", 
whose relative advantage over other options still cannot be determined. 
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Park & Kim (2005) raise the question whether the decoy effect works in the same way when two decoys 
are offered. In this case, the first decoy is only asymmetrically dominated by the target. It cannot be 
easily compared with the competitor. The second decoy, on the other hand, is asymmetrically domi-
nated by both the target and the competitor. It turns out that, with two decoys involved, the target 
only gains in attractiveness if the participants are asked to first evaluate each of the four options for 
themselves. If they are asked to compare the options immediately, the decoy effect does not work as 
usual any longer. 

Frederick, Lee & Baskin (2014) raise the question of which measures are most effective in eliciting a 
decoy effect. They compare the effectiveness of three ways of presenting product dimensions: repre-
sentation in numerical form, representation in pictorial form, and physical experience of the differ-
ences by the subjects themselves (e.g., through the sense of taste). They find that the decoy effect 
occurs only when the product dimensions are represented as written-down numbers, for example in 
the form of numerical ratings. Yang & Lynn (2014) also conclude that qualitative-verbal descriptions as 
well as pictorial representations are not particularly well suited to create an asymmetric dominance 
effect. The two measures studied lead to significant decoy effects in only 11 of 91 comparisons across 
23 different product classes. 

Crosetto & Gaudeul (2016) investigate the robustness of the decoy effect. For this purpose, they intro-
duce the so-called "monetary indicator" as an additional dimension. The authors design the monetary 
indicator in such a way that selecting the target entails higher costs than selecting the competitor. 
They vary how much higher the cost of selecting the target is compared to the competitor. It turns out 
that the preference for the target remains as long as it is up to 8% more expensive than the competitor. 

Last but not least, the decoy effect has also been shown to have an impact on individuals' risk prefer-
ence and social behavior. Kroll & Vogt (2012) let subjects choose between different types of lotteries. 
It is shown that adding a decoy in all cases leads to an increase in participants' risk taking. Wang et al. 
(2018) have their subjects play a modified form of the "Prisoner’s Dilemma" in which the third option 
"reward" is added as a decoy to the well-known options "cooperate" and "defect." It can be observed 
that the decoy leads to subjects cooperating significantly more often and thus also increases their av-
erage gain compared to a control condition. 

 

2.2 Algorithm Aversion 

Differences in the performance of algorithms and humans in dealing with similar tasks have been stud-
ied since the 1950s (Meehl, 1955). In recent years, the interaction between humans and algorithms 
has been examined more closely, as automated algorithmic activity increasingly shapes online infor-
mation and economic systems. In an experimental study, Önkal et al. (2009) found that the same rec-
ommendations are followed to a lesser extent when subjects are led to believe that they come from 
an algorithm than when they are told that the recommendations come from a competent human. Even 
though the term “algorithm aversion” was not yet established at the time, the study was subsequently 
widely interpreted as evidence of algorithm aversion. 

Six years later, Dietvorst, Simmons & Massey (2015) found that errors by an algorithm lead to a greater 
loss of confidence than errors by a human. Their subjects could delegate a prediction task to either an 
algorithm or a human. The subjects who were able to watch the algorithm commit errors in trial rounds 
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showed an increasingly dismissive attitude towards the algorithm in the subsequent compensated 
rounds. To describe this phenomenon, the term "algorithm aversion" was coined. Nowadays, the term 
is used both to generalize humans' rejection of algorithms and to describe the dramatic diminishment 
of human trust in algorithmic efficiency upon observing the errors of an algorithm. (Filiz et al., 2021a). 

Further studies have shown that algorithm aversion is equally observable in different disciplines, such 
as law (Ireland, 2020), asset management (Niszczota & Kaszás, 2020), medicine (Lennartz et al., 2021), 
or poetry (Köbis & Mossink, 2021). Its extent nevertheless seems to depend on the context of the task 
settings (Filiz et al., 2021a; Castelo, Bos & Lehmann, 2019). 

Algorithm aversion can occur regardless of whether the users can execute a task themselves or dele-
gate the task to another expert or layperson as opposed to entrusting the work solely to an algorithm 
(Germann & Merkle, 2020). Unrealistic expectations about the accuracy of an algorithm have been 
identified as one of the main causes of algorithm aversion (Rebitschek, Gigerenzer & Wagner, 2021). 
Respondents often assume the error rates of algorithms to be in ranges that are so low that they can-
not be achieved in practice. This also partly explains why trust in algorithms drops so rapidly after 
erroneous predictions (Dietvorst, Simmons & Massey, 2015). 

Furthermore, it has been shown that decision makers have reservations about algorithms because, 
unlike humans, they do not trust them to learn over time and gradually improve their prognosis quality 
(Berger et al., 2020). Consistent with this is the finding that the so-called "uniqueness neglect" can also 
be a driver of algorithm aversion. Uniqueness neglect describes the phenomenon in which humans 
believe each meaningful decision is accompanied by unique circumstances and the intrinsic nature of 
the decision and surrounding context is unable to be grasped fully by an algorithm (Pezzo & Beckstead, 
2020; Longoni, Bonezzi & Morewedge, 2019). Furthermore, humans tend to form stronger emotional 
bonds with fellow humans than with algorithms, which also leads them to  feel hesitant in solely trust-
ing algorithms during collaborative sensemaking processes (Leyer & Schneider, 2019). 

Yeomans et al. (2019) also attribute algorithm aversion in part to an overestimation of people's own 
predictive abilities (overconfidence). By overestimating the likelihood of success when performing a 
task themselves, people also misjudge the value added by using an algorithm. It has been shown that 
learning effects, induced by repetitive tasks as well as clear feedback about one's own performance 
and that of an algorithm, can help to slightly reduce the aversion (Filiz et al., 2021b). Fittingly, algorithm 
aversion has been observed to decrease with increasing digital literacy of decision makers (Wang, Har-
per & Zhu, 2020), but to increase with increasing expertise of decision makers in the field of the par-
ticular prediction task (Allen & Choudhury, 2021; Gaube et al., 2021). 

In practice, algorithm aversion means that promising innovations based on the use of algorithms and 
AI do not establish themselves on the market as one would expect in view of their advantages. If algo-
rithm aversion can be overcome, extensive cost savings or the development of new digital business 
models can be made possible. In recent years, therefore, research has increasingly been devoted to 
finding measures that are likely to increase decision-makers' confidence in technology and thus their 
willingness to use it (Ben David, Resheff & Tron, 2021; Kawaguchi, 2021; Kim, Giroux & Lee, 2021; 
Efendić, Van de Calseyde & Evans, 2020; Dietvorst, Simmons & Massey, 2018). However, the identified 
measures only reduce algorithm aversion to a small extent and also introduce new problems, such as 
a deterioration in prediction quality (Kawaguchi, 2021; Dietvorst, Simmons & Massey, 2018). 
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2.3 Hypotheses 

The example of an investment experiment is used in order to investigate whether a decoy effect can 
influence the decision for or against the use of an algorithm. The experimental design of Ariely (2009) 
described in chapter 2.1 is transferred to the context of an investment decision with automated asset 
managers, so-called robo-advisors. In condition 1 (control), subjects can perform the forecasting task 
independently or delegate it to an algorithm with a success rate of 70%. In condition 2 (decoy), subjects 
can perform the prediction task independently, delegate to an algorithm with a success rate of 70%, 
or delegate to a second algorithm with a success rate of 60%. The algorithm with a success rate of 70% 
will be referred to as "Robo-advisor A" or "Algorithm A" and the algorithm with a success rate of 60% 
will be referred to as "Robo-advisor B" or "Algorithm B." 

By adding the second algorithm, a decoy effect is produced (Figure 1). In this study, Algorithm A acts 
as the target. Algorithm B represents the decoy that could increase the attractiveness of the target 
(Algorithm A). The independent accomplishment of the prediction task by the subjects themselves is 
the competitor in this case. The experiment lasts ten rounds (see chapter 3.2). 

 

Figure 1: General design of the experiment 

 

 

Prior research has shown that subjects tend to prefer human judgment over the advice of an algorithm 
(cf. e.g., Alemanni et al., 2020; Promberger & Baron, 2006). When deciding between algorithms and 
one's own judgment, this effect can be additionally amplified by an overestimation of one's own fore-
casting abilities, which is also referred to as “overconfidence” (cf. Filiz et al., 2021b). This is interesting 
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insofar as the probability of achieving a result by human judgment that even comes close to that of a 
specialized algorithm is extremely low. In view of the previous research results, it can nevertheless be 
expected that in this study, too, a large proportion of the subjects will rely on their own performance 
of the task, irrespective of the advantages of the algorithm. 

 

Hypothesis 1: Not all subjects choose to always use an algorithm. 

 

The participants in condition 1 (control) must decide between the better-performing Robo-advisor A 
with a success rate of 70% (target) and the independent asset management by themselves (competi-
tor). In condition 2 (decoy), Robo-advisor B with a success rate of 60% is added as a decoy, which is 
comparable to Robo-advisor A and clearly inferior to it. 

From a purely mathematical point of view, the decision situation is identical in both cases. It only de-
pends on whether the chances of success are estimated to be higher when performing the prediction 
task independently than when choosing Robo-advisor A. Robo-advisor B should not have any influence 
on the decisions of a subject acting as a strictly rational utility maximizer because of the lower proba-
bility of success. 

If the decoy effect sets in analogous to the form observed by Ariely (2009), the comparability of Robo-
advisor A with Robo-advisor B with respect to the dimension "success rate" in the second condition 
will, however, lead to a significantly higher number of decisions in favor of delegation to the superior 
algorithm and against independent performance of the prediction task. 

 

Hypothesis 2: The proportion of decisions in favor of the target algorithm is higher if another 
algorithm is introduced as a decoy. 

 

A crucial aspect of algorithm aversion lies in the reaction to flawed predictions. As in this study, the 
subjects of Dietvorst, Simmons & Massey (2015) are faced with the choice whether to perform a pre-
diction task independently or to delegate it to an algorithm. Some of the subjects have the opportunity 
to observe the algorithm in advance as it performs its task (and consequently, inevitably, as it commits 
errors). The authors investigate to what extent this influences the decision behavior of the subjects. 
They find that subjects who were able to observe the algorithm making inaccurate predictions actually 
rely significantly more often on their own judgment than on the algorithm in subsequent rounds, even 
though the algorithm still has the higher success rate. Interestingly, the effect does not occur to the 
same extent after observing unsuccessful predictions by a human. This finding is confirmed by Bogert, 
Schecter & Watson (2021), who also conclude that subjects are more sensitive to errors made by an 
algorithm than to errors made by a human. 

In this study, it will be investigated whether algorithm aversion following erroneous forecasts also oc-
curs when multiple algorithms are available. Adding another algorithm in condition 2 (decoy) could 
lead to a weakening of the effect, since the subjects now have an additional alternative to choose from. 
Even if they no longer have sufficient confidence in the algorithm that made an inaccurate prediction, 
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they do not necessarily have to abandon the use of algorithms altogether but can simply use the sec-
ond algorithm. In addition, the resulting distrust in the algorithm could be weakened by the additional 
information that it is nevertheless a high-performing algorithm relative to the other algorithm. This 
would mean that the rejection of algorithms as decision-making aids after an incorrect forecast is no 
longer so pronounced if several algorithms are available. 

 

Hypothesis 3: The proportion of subjects who subsequently use an algorithm after an incorrect 
prognosis of an algorithm is significantly higher in condition 2 (decoy) than in condition 1 (con-
trol). 

 

Based on this, the reaction to one's own inappropriate predictions could also vary if several algorithms 
are available as alternatives. In contrast to the study by Dietvorst, Simmons & Massey (2015), a broader 
range of options and additional information on relative performance could increase the willingness to 
abandon the initial rejection attitude of algorithms after experiencing the difficulty of a prognosis task 
firsthand. 

 

Hypothesis 4: The proportion of subjects who subsequently switch to an algorithm after mak-
ing an incorrect prognosis themselves is significantly higher in condition 2 (decoy) than in con-
dition 1 (control). 

 

3. Experimental Design 

3.1 Participants 

To answer the research questions, an economic experiment was conducted with students of the Ost-
falia University of Applied Sciences in Wolfsburg, Germany. A total of 160 students came to the uni-
versity’s research laboratory between April 20, 2022 and April 28, 2022. They had signed up inde-
pendently for one of 28 sessions, each lasting approximately half an hour. The subjects appeared con-
centrated during the experiment. They received an average payment of €5.95, which seems to have 
created an effective incentive for meaningful decision-making. 

The subjects were on average 23.6 years old and in the fifth semester of their studies. For 123 partici-
pants (78%), it was their first time partaking in an economic experiment, and the remaining 37 partic-
ipants (22%) had already engaged in other economic experimental studies. The subjects were equally 
divided into two groups: a treatment condition, in which a decoy is introduced, and a control condition. 
To avoid bias of the results, an equal distribution with respect to faculty and gender was taken into 
account (Figures 2 and 3). 
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Figure 2: Distribution of the subjects' faculties in the conditions 

 

 

Figure 3: Distribution of the subjects’ genders in the conditions 

 

 

3.2 Task 

The subjects have to cope with a task from the field of asset management. In the course of ten game 
rounds, each subject must decide whether to invest an allocated initial budget of 10 experimental 
currency units (ECUs) in the so-called “Z Share" or to save the budget. In each game round, subjects 
have to invest or save the full amount of 10 ECUs. It is not possible to split the budget within a game 
round. At the end of the game, the accumulated profit in ECUs from the individual game rounds is 
converted and paid out to the participants as compensation.  

The participants' goal is therefore to maximize their credit. To do this, in each of the ten rounds of the 
game, they can either manage their budget themselves or entrust it to a robo-advisor (control condi-
tion) or one of two robo-advisors (decoy condition), who invest or save the budget in their place. The 
detailed instructions are in Appendix A. 

When the budget is invested in the share, the round profit may be above or below the initial budget 
of 10 ECUs due to price fluctuations. For example, if the price of the share increases by 10% within a 
round, and 10 ECUs have been invested in the share, 11 ECUs will be credited to the balance. If the 
share price falls by 10% in one round and 10 ECUs are invested in the share, the balance is credited 

0% 20% 40% 60% 80% 100%
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(control) Economics

Vehicle Technology

Healthcare

Other

0% 20% 40% 60% 80% 100%
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Other
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with 9 ECUs. If, on the other hand, the decision is made to save, the subjects' balance is always credited 
with exactly 10 ECUs. 

Before making the investment decision, the subjects should therefore get an idea of whether they 
think the share price will rise or fall in the respective round. If the price rises, it is the profit-maximizing 
strategy to invest in the share. If the price falls, the profit-maximizing strategy is to save. 

As an aid, before each game round, the current values of four fundamental influencing factors are 
announced. In combination with a fifth influencing factor (the so-called “random influence”), the four 
fundamental influencing factors determine the share price trend. The instructions describe in detail in 
which ranges the values of the influencing factors can vary. In addition, the subjects receive insight 
into the distribution of the values of the fundamental influencing factors and the random influence in 
ten rounds of share price history. Based on this information, they can get an approximate picture of 
the correlations and the current development. The values of the influencing factors in each round were 
generated once as a random process and are identical for each subject. 

The participants in condition 1 (control) are given the choice of performing the asset management task 
independently or delegating it to Robo-advisor A with a success rate of 70%. That is, the algorithm 
makes the decision that maximizes the subjects' assets (invest or save) in an average of 7 out of 10 
rounds. In the second condition (decoy), in addition to the independent execution and the Robo-advi-
sor A, the subjects also have the Robo-advisor B with a success rate of 60%. 

The success probabilities of the algorithms are presented in a table in the instructions, along with other 
product dimensions. This follows the recommendation of Frederick, Lee & Baskin (2014), who found 
that the presentation of product dimensions in number form is particularly well suited to elicit a decoy 
effect. 

 

3.3 Procedure 

The experiment is implemented in the experimental software z-Tree (cf. Fischbacher, 2007) and is con-
ducted in the laboratory of the Ostfalia University of Applied Sciences. Subjects participate in the ex-
periment from a computer workstation and receive instructions in paper form. The experiment is mod-
erated throughout by a game leader. This ensures that participants actually take the necessary time, 
do not use any unauthorized aids, and are not disturbed while they have to focus on the task. 

The participants first read the instructions for their respective condition. Subsequently, control ques-
tions appear on the screen to check whether they have understood the task and correctly recorded all 
relevant information (see Appendix B). In the second condition, this also ensures that a decoy effect 
can occur. 

The experiment starts with the subjects being given an insight into ten rounds of share price history as 
well as the values of the four fundamental influencing factors for the current round for orientation 
purposes (see Appendix C). At this point, the subjects decide for the first time whether they want to 
perform the investment task in the current round independently or delegate it to Robo-advisor A (con-
dition 1) or either Robo-advisor A or Robo-advisor B (condition 2). If the subjects decide to complete 
the task independently, they must also decide whether to invest their budget in the Z Share in the 
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current round (expectation: share price rises) or save it (expectation: share price falls). This concludes 
the first round of the game. 

At the beginning of each new game round, the subjects are given an insight into the development of 
the share price and the influencing factors in the past ten game rounds, as well as the current values 
of the fundamental influencing factors. In addition, the change in their cumulative balance in the pre-
vious game round is always displayed. This allows the subjects to recognize whether the optimal in-
vestment decision was made in the past game round or whether there was a forecast error. In each 
game round, the subjects can decide again whether they want to perform the investment task inde-
pendently or use the algorithm (condition 1) or one of the two algorithms (condition 2). 

After completion of the tenth game round, the subjects are informed of their total compensation. 
Next, they answer a short questionnaire asking for demographic information. Subsequently, the pay-
out takes place. From the accumulated balance at the end of the tenth game round, 95 ECUs are de-
ducted. The remaining ECUs are exchanged in the ratio of 1 ECU = 1 Euro and paid out to the partici-
pants as compensation. The higher the accumulated credit from the ten rounds of play, the higher the 
payout for the subjects. 

 

3.4 The Algorithms 

The two robo-advisors use the values of the fundamental influencing factors to make a prognosis of 
how the share price will develop. If their model predicts a rising price, they invest the subjects' budget 
in the share; otherwise, they save it. The formula that the algorithms rely on is designed to make the 
decision that is favorable to the subjects in the majority of the rounds of the game, but they also oc-
casionally miss the mark. In order to analyze the subjects' reactions to incorrect predictions, it is crucial 
that the experiment uses algorithms whose predictions are not always correct. 

Robo-advisor A uses exactly the equation behind the share price formation mechanism. It always en-
ters the current values of the fundamental influencing factors into the formula and makes a forecast 
on this basis. Only the amount of the random influence, which acts as the fifth influencing factor, is 
not known to Robo-advisor A. It therefore always calculates with the expected value of the random 
influence (0). The random influence leads to the fact that the forecasts of the algorithm only in 70% of 
the cases lead to the financially advantageous decision (invest or save). In 30% of the cases, the random 
influence reverses the direction of the share price development suggested by the four known funda-
mental influencing factors. 

Robo-advisor B uses the same approach. However, this algorithm has no access to the values of fun-
damental influencing factor B. Therefore, it always calculates with the mean value of the range of fun-
damental influencing factor B, which is 15 (see instructions in Appendix A). The use of approximate 
formulas to predict future values is an established procedure when algorithms lack relevant infor-
mation (cf. Rencher & Schaalje, 2008). 

The formula behind the Z Share price development mechanism is: 

0.8	×	Fundamental	Influencing	Factor	A	+	0.2	×	Fundamental	Influencing	Factor	B	–	0.4	×	Fun-
damental	Influencing	Factor	C	+	0.04	×	Fundamental	Influencing	Factor	D	+	Random	influence	
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The formula used by Algorithm A is: 

0.8	×	A	+	0.2	×	B	–	0.4	×	C	+	0.04	×	D	+	0	

	

The formula used by Algorithm B is: 

0.8	×	A	+	0.2	×	15	–	0.4	×	C	+	0.04	×	D	+	0	

 

The price formation mechanism and the procedure of the algorithms are shown in table 3. They are 
illustrated below using the example of game round 5. In game round 5, the value of fundamental in-
fluencing factor A is 12, fundamental influencing factor B is 9, fundamental influencing factor C is 7, 
fundamental influencing factor D is 30, and the random influence is -1 (see Table 3 – section "Influenc-
ing Factors"). Thus, the price of the Z Share takes the following value: 

0.8	×	12	+	0.2	×	9	–	0.4	×	7+	0.04	×	30	+	(-1)	=	8.80	ECUs	

 

Subjects who invest their round budget in this game round will be credited 8.80 ECUs. Subjects who 
save their round budget will always be credited 10.00 ECUs. So, in this round it is advisable to save the 
round budget of 10 ECUs instead of investing it in the Z Share. The delta is -1.20 ECUs (see Table 3 – 
section "Yield in ECU"). 

 

Algorithm A uses the following equation in this round of the game:  

0.8	×	12	+	0.2	×	9	–	0.4	×	7+	0.04	×	30	+	0	=	9.80	ECUs	

	

Thus, its model predicts that no higher round profit can be achieved by investing (+9.80 ECUs) than by 
saving (+10.00 ECUs). The predicted delta between investing and saving is -0.20 ECUs. If this delta is 
negative or exactly 0, i.e., a share price of ≤ 10 ECUs is predicted, the algorithm saves the subjects' 
round budget. Their balance is therefore credited with 10 ECUs when choosing Algorithm A in game 
round 5. 

 

Algorithm B uses the following equation in this round of the game:  

0.8	×	12	+	0.2	×	15	–	0.4	×	7+	0.04	×	30	+	0	=	11.00	ECUs	

	

Thus, its model predicts that a higher round profit can be achieved by investing (+11.00 ECUs) than by 
saving (+10.00 ECUs). The predicted delta between investing and saving is +1.00 ECUs. If this delta is 
positive, i.e., a share price of > 10 ECU is predicted, the algorithm invests the subjects' round budget 
in the Z Share. However, the actual share price at the end of the round is only 8.80 ECUs. The credit 
balance of the subjects who bet on Algorithm B in game round 5 is consequently credited with 8.80 
ECUs (see Table 3 – section "Algorithm Success"). 
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Table 3: Price formation mechanism, forecasts of algorithms, and remuneration depending on chosen strategy 

Game Round 1 2 3 4 5 6 7 8 9 10 Sum Remuneration* 

Influencing Factors             

Influencing Factor A 13 11 6 8 12 11 6 11 10 15 - - 

Influencing Factor B 15 13 17 18 9 14 20 18 16 11 - - 

Influencing Factor C 6 8 2 1 7 6 5 8 5 9 - - 

Influencing Factor D 19 27 35 32 30 23 24 22 23 21 - - 

Random Influence 0 1 0 -2 -1 0 2 1 -1 0 - - 

Yield in ECU             

Invest 11.76 ECU 10.28 ECU 8.80 ECU 8.88 ECU 8.80 ECU 10.12 ECU 9.76 ECU 11.08 ECU 9.12 ECU 11.44 ECU 100.04 ECU - 

Save 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 100.00 ECU - 

Delta (Invest - Save) +1.76 ECU +0.28 ECU -1.20 ECU -1.12 ECU -1.20 ECU +0.12 ECU -0.24 ECU +1.08 ECU -0.88 ECU +1.44 ECU - - 

Optimal Strategy Invest Invest Save Save Save Invest Save Invest Save Invest - - 

Algorithm Success             

Price Forecast (Algorithm A) 11.76 ECU 9.28 ECU 8.80 ECU 10.88 ECU 9.80 ECU 10.12 ECU 7.76 ECU 10.08 ECU 10.12 ECU 11.44 ECU - - 

Price Forecast (Algorithm B) 11.76 ECU 9.68 ECU 8.40 ECU 10.28 ECU 11.00 ECU 10.32 ECU 6.76 ECU 9.48 ECU 9.92 ECU 12.24 ECU - - 

Forecast of Delta (Alg. A) +1.76 ECU -0.72 ECU -1.20 ECU +0.88 ECU -0.20 ECU +0.12 ECU -2.24 ECU +0.08 ECU +0.12 ECU +1.44 ECU - - 

Forecast of Delta (Alg. B) +1.76 ECU -0.32 ECU -1.60 ECU +0.28 ECU +1.00 ECU +0.32 ECU -3.24 ECU -0.52 ECU -0.08 ECU +2.24 ECU - - 

Decision of Algorithm A Invest Save Save Invest Save Invest Save Invest Invest Invest - - 

Decision of Algorithm B Invest Save Save Invest Invest Invest Save Save Save Invest - - 

Remuneration             

Only Incorrect Forecasts 10.00 ECU 10.00 ECU 8.80 ECU 8.88 ECU 8.80 ECU 10.00 ECU 9.76 ECU 10.00 ECU 9.12 ECU 10.00 ECU 95.36 ECU €0.36 

Only Correct Forecasts 11.76 ECU 10.28 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.12 ECU 10.00 ECU 11.08 ECU 10.00 ECU 11.44 ECU 104.68 ECU €9.68 

Always Saving 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 10.00 ECU 100.00 ECU €5.00  

Always Investing 11.76 ECU 10.28 ECU 8.80 ECU 8.88 ECU 8.80 ECU 10.12 ECU 9.76 ECU 11.08 ECU 9.12 ECU 11.44 ECU 100.04 ECU €5.04  

Choosing Algorithm A 11.76 ECU 10.00 ECU 10.00 ECU 8.88 ECU 10.00 ECU 10.12 ECU 10.00 ECU 11.08 ECU 9.12 ECU 11.44 ECU 102.40 ECU €7.40  

Choosing Algorithm B 11.76 ECU 10.00 ECU 10.00 ECU 8.88 ECU 8.80 ECU 10.12 ECU 10.00 ECU 10.00 ECU 10.00 ECU 11.44 ECU 101.00 ECU €6.00  

 
Game rounds in which an algorithm does not make the profit-maximizing decision are highlighted in gray.  
*Remuneration is calculated from the cumulative balance at the end of the 10th game round minus 95 ECU, exchanged in the ratio 1 ECU = 1 EUR (see Appendix A). 
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3.5 Strategies 

The subjects have three main strategies at their disposal. They can choose to neglect the robo-advisors 
and carry out the investment task independently in all ten rounds of the game. Their compensation is 
then strongly dependent on the success of their forecasts. Based on the values of the fundamental 
influencing factors generated by a random process, it will range from €0.36 (in the case of ten incorrect 
forecasts) to €9.68 (in the case of ten correct forecasts). 

If subjects save in all ten rounds, their compensation is €5.00 (10 rounds × 10 ECUs - 95 ECUs). If sub-
jects invest in the Z Share in all ten rounds, they receive €5.04. In three out of ten rounds, the share 
price trend suggested by the fundamental influencing factors is reversed by the random influence, the 
amount of which is unknown in advance. Consequently, it cannot be assumed that the subjects will 
succeed in earning the maximum possible compensation. If subjects always make the investment de-
cision implied by the course of the fundamental influencing factors, their compensation for the ten 
randomly designed price rounds is €7.40. Thus, the compensation for independent forecasting will 
presumably be on average in the range between €5.00 (random asset management) and €7.40 (struc-
tured asset management based on the fundamental influencing factors). 

Furthermore, subjects can use Robo-advisor A in all ten rounds of the game. In this case, their com-
pensation is €7.40 because the algorithm optimally exploits the information content of the fundamen-
tal influencing factors. 

In the second condition (decoy), the subjects can also use Robo-advisor B throughout. In this case, their 
compensation is below the compensation when choosing the superior Robo-advisor A and amounts to 
€6.00 (see Table 3 - section "Remuneration"). 

While human subjects can only roughly estimate the price formation mechanism on the basis of his-
torical data on price development, the algorithms know the exact price formation mechanism and also 
have substantial advantages in linking the given information. In order to achieve the success probabil-
ity of Algorithm A, participants would have to evaluate all information from the ten rounds of price 
history optimally. To do this, they would have to analyze the effects of each of the four fundamental 
influencing factors as well as the random influence on the share price and derive the price formation 
mechanism by an extremely complex regression equation. They would then have to enter the values 
of the fundamental influencing factors in each of the remunerated game rounds into the formula of 
the price formation mechanism and, on the basis of the result, make a decision as to whether to save 
or invest their budget. 

But even if they succeed in doing so, the expected value of their remuneration would only be the same 
as when using Algorithm A, which also makes optimal use of all the information available in advance. 
In order to exceed the probability of success of Algorithm A, on top of that, the subjects would have 
to guess correctly in which rounds of the game the random influence, the amount of which is unknown 
in advance, would cause a change in the sign of the share price. To beat the algorithm in this experi-
ment, therefore, not only outstanding analytical skills are required, but also a large amount of luck. 
This is exactly why algorithm aversion has attracted the interest of behavioral economists. Decisions 
against an algorithm that is so superior, and that are also associated with financial disadvantages, are 
often placed in the context of cognitive biases. 
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3.6 Methods 

To test hypothesis 1 (Not all subjects choose to always use an algorithm), the decisions in favor of the 
target algorithm and decoy algorithm in all ten game rounds are added up for each subject, regardless 
of the treatment. Then, using the one-sample t-test, it is checked whether the number of game rounds 
in which an average subject relies on an algorithm is significantly different from 10 out of 10 game 
rounds (100%). In addition, the Z-test is used to determine whether the proportion of subjects who 
consistently bet on the algorithm differs significantly from 100% of the subjects (160 out of 160).  

To test hypothesis 2 (The proportion of decisions in favor of the target algorithm is higher if another 
algorithm is introduced as a decoy), the mean value of the decisions in favor of the target algorithm is 
determined in both conditions. Using the Wilcoxon rank sum test, it can be checked whether there is 
a significant difference between the conditions. 

Hypothesis 3 is: The proportion of subjects who subsequently use an algorithm after an incorrect prog-
nosis of an algorithm is significantly higher in condition 2 (decoy) than in condition 1 (control). Here 
the chi-square test is used. It checks whether the proportion of decisions in favor of the algorithms 
differs significantly between the conditions. For hypothesis 3, all situations are selected in which a 
subject delegated the decision to an algorithm in any round between game round 1 and game round 
9 and the algorithm did not make the profit-maximizing decision (invest or save), i.e., the algorithm 
made an error. Subsequently, for both conditions it is separately recorded in how many cases an algo-
rithm was selected again in the following game round and in how many cases the subjects made the 
investment decision themselves in the following game round. The resulting 2x2 contingency table (con-
dition 1 vs. condition 2; own execution vs. algorithm) is subjected to the chi-square test. 

In addition, the same procedure is applied solely to the responses to the first (second, ..., n-th) error 
of an algorithm that a subject observes. Again, the chi-square test is used to check whether the deci-
sions in the follow-up round differ significantly between the treatments. This additional procedure has 
the advantage that each subject is included only once in each chi-square test. This can lead to possible 
biases in the results, e.g., due to differentially pronounced learning effects, being less significant. 

Hypothesis 4 is: The proportion of subjects who subsequently switch to an algorithm after making an 
incorrect prognosis themselves is significantly higher in condition 2 (decoy) than in condition 1 (con-
trol). To test this hypothesis, the same procedure is used as for hypothesis 3, with the only difference 
that now only the game rounds after incorrect predictions by the subjects themselves (instead of in-
correct predictions by the algorithms) are taken into account. 

 

4. Results 

4.1 General 

160 subjects each make 10 decisions between independent asset management and delegation of the 
task to an algorithm. In total, 1,600 decisions are observed. Of these, 899 (56.188%) are for independ-
ent asset management and only 701 (43.813%) are for one of the two algorithms. Subjects who man-
age their assets independently invest their round budget in Z Shares in 577 cases (64.182%) and save 
the budget in 322 cases (35.818%). 
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The 43.813% of decisions for the algorithms are divided into 679 decisions (42.438%) in favor of Algo-
rithm A with a success rate of 70% and 22 decisions (1.375%) in favor of Algorithm B with a success 
rate of 60%. Age, gender, and faculty of the subjects have no significant influence on the decision be-
tween algorithm and independent asset management. Moreover, the distribution remains constant 
over the course of the experiment. In every single one of the ten rounds of the game, only between 
35% (round 4) and 49% (round 10) of the subjects decide to use an algorithm, despite its obvious ad-
vantages (see Section 3.5). The participants in the experiment are clearly subject to the phenomenon 
of algorithm aversion. Only 18 of the 160 subjects consistently rely on an algorithm (p-value Z-test < 
0.001). The one-sample t-test supports that subjects are far from selecting an algorithm in all ten 
rounds of the game (t = -21.376, p < 0.001). The 95% confidence interval ranges from 3.862 to 4.900 
out of 10 decisions per algorithm per subject. 

In terms of the number of correct predictions, the subjects are clearly inferior to both algorithms. The 
independent asset management by the subjects leads to the profit maximizing investment decision in 
43.604% of the cases (392 out of 899 decisions) and in 56.396% of the cases (507 out of 899 decisions) 
not to the profit maximizing investment decision. As expected, the complexity of the task poses con-
siderable problems for the subjects in independent asset management. Their success rate is even be-
low 50%. 

In the instructions, the probability of success of Algorithm A was given as 70%. Its predictions are cor-
rect in 71.429% of the actual observed cases (485 of 679 decisions). Recommendations of Algorithm B 
are correct in 63.636% of the actually observed cases (14 out of 22 decisions), which also fits the re-
ported success probability of 60%. 

Consistent with these results, subjects who consistently make their own predictions achieve a com-
pensation of €5.12 on average. In comparison, the average compensation of subjects who consistently 
rely on an algorithm is €7.27 (Table 4). Linear regression analysis shows that the compensation in-
creases on average by 19.793 cents with each additional decision in favor of one of the two algorithms 
(p-value < 0.001). 

 

Table 4: Average remuneration depending on the frequency with which the algorithm was selected 

Number of Rounds in Which an Algorithm 
Was Selected Number of Subjects Ø Remuneration 

0 26 €5.12 
1 15 €5.65 
2 16 €5.91 
3 17 €5.60 
4 11 €5.16 
5 15 €5.14 
6 12 €6.16 
7 15 €6.79 
8 8 €6.84 
9 7 €7.08 

10 18 €7.27 
 160 €5.95 
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In view of these figures, the rejection attitude toward the algorithm is remarkable. Over the course of 
ten rounds of play, subjects pay for their algorithm aversion with a reduction in their average remu-
neration by up to €1.98, or up to 30% on average. This is nevertheless in line with previous studies, in 
which algorithm aversion also occurs, although the renunciation of the algorithm drastically reduces 
the expected value of the compensation. 

 

4.2 Differences Between Conditions 

Out of 800 decisions in the control condition, 338 (42.250%) are made in favor of the target algorithm 
and 462 (57.750%) in favor of the independent asset management. In the decoy condition, 341 deci-
sions (42.625%) are made in favor of the target algorithm, 437 decisions (54.625%) are made in favor 
of the independent asset management, and 22 decisions (2.750%) are made in favor of the decoy al-
gorithm (Figure 4 and Table 5). 

 

Figure 4: Comparison of the conditions 

     

 

 

Table 5: Comparison of the conditions 

Condition Own Forecasts Algorithm A Algorithm B Total Algorithm 
Control (1) 462 (57.750%) 338 (42.250%) - 338 (42.250%) 
Decoy (2) 437 (54.625%) 341 (42.625%) 22 (2.750%) 363 (45.375%)  
Total 899 (56.188%) 679 (42.438%) 22 (1.375%) 701 (43.813%) 

 

The proportion of decisions in favor of own predictions thus decreases slightly in condition 2 (decoy). 
However, it is by no means the case that subjects now massively select target Algorithm A, as previous 

42,250%

57,750%

Condition 1 (control)

Algorithm A (Target)

Own Forecasts (Competitor)

42,625%

2,750%

54,625%

Condition 2 (decoy)

Algorithm A (Target)

Algorithm B (Decoy)

Own Forecasts (Competitor)
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research on the decoy effect might have suggested. Of the 25 additional decisions made in favor of the 
algorithms in the decoy condition, 22 are for Algorithm B (decoy) and only 3 are for Algorithm A (tar-
get). The p-value of the Wilcoxon rank sum test of 0.889 proves that the addition of the decoy in the 
form of Algorithm B in condition 2 does not lead to any significant increase in the use of the target 
algorithm.  

It can be argued just as little that adding a decoy contributes to the reduction of algorithm aversion. 
Aggregating the decisions in favor of the two algorithms, the difference between the conditions is still 
far from significant (p-value of the Wilcoxon rank sum test = 0.530). The observed difference of 25 
decisions (3.125%) is too small to constitute a significant result. It is rather due to noise in the decisions 
of the eleven subjects who, despite its lower probability of success, select Algorithm B once or several 
times. 

Further analyses show that the behavior of the subjects is hardly influenced by the introduction of a 
decoy. Firstly, the number of subjects who consistently follow a certain strategy is almost identical in 
both conditions. 18 subjects choose the algorithm in all ten rounds of the game. They are evenly dis-
tributed between both conditions (9 each). Of the 26 subjects who do not select the algorithm in any 
single game round, 12 are in condition 1 (control) and 14 in condition 2 (decoy). Secondly, there are 
no differences in the time course of the game (Figure 5). The difference in the frequency with which 
the target algorithm is selected is always in the small range of 0% (round 7) to 8.750% (round 3). 

 

Figure 5: Comparison of the decisions in favor of the target algorithm between the conditions per game 
round 
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In line with all these findings, the average compensation in the two conditions is also close to each 
other. The average compensation per subject is €6.02 in condition 1 (control) and €5.89 in condition 2 
(decoy). The difference is not significant in the Wilcoxon rank sum test (p-value = 0.371). 

 

4.3 Reaction to Forecast Errors 

Of the 1,600 total forecasts made, 891 are correct and 709 are incorrect. The latter are divided into 
507 incorrect forecasts by subjects themselves and 202 incorrect forecasts by one of the algorithms. 
In the following, the reaction to incorrect predictions in the first nine game rounds is examined, since 
only these game rounds are followed by at least one more game round in which a change in behavior 
is possible.  

The algorithm makes 202 incorrect predictions in the first nine game rounds: 99 in condition 1 (control) 
and 103 in condition 2 (decoy). In the control group, 69.697% of subjects continue to use the algorithm 
in the subsequent round regardless. 30.303% of the subjects withdraw their trust in the algorithm 
immediately after an error and opt to make their own investment decision in the subsequent round. 
This result is consistent with previous studies that found that human trust in algorithms declines rap-
idly after erroneous predictions (cf. Dietvorst, Simmons & Massey, 2015).  

How will subjects react if not only another algorithm is available but also the decoy effect provides 
additional evidence for the relatively good performance of the target algorithm? In condition 2 (decoy), 
only 62.136% of the subjects choose the target algorithm immediately after they observe an error of 
an algorithm. 4.854% of the subjects subsequently choose the decoy algorithm and 33.010% choose 
the independent prediction by themselves (Table 6).  

Thus, the expected effect does not occur. In fact, the extent of algorithm aversion after forecast errors 
of an algorithm even seems to slightly increase under the impression of a decoy effect. The p-value in 
the chi-square test that includes all decisions made after observing an error of an algorithm is 0.679, 
which is not a significant result. When only the response to the first (second, ..., n-th error) of an algo-
rithm is considered, the difference is also not significant (first error of an algorithm: n = 105, p = 0.781; 
second error of an algorithm: n = 66, p = 0.421; third error of an algorithm: n = 29, p = 0.453; for more 
than three errors of the algorithm, the sample size is less than 20 participants). 

 

Table 6: Responses to forecast errors by an algorithm 
 

Condition 1 (control) Condition 2 (decoy) 
Selection in 
next round 

Own Fore-
casts 

Algorithm 
A 

Algorithm 
B 

Own Fore-
casts 

Algorithm 
A 

Algorithm 
B 

Total 30 69 - 34 64 5 
Percentage 30.303% 69.697% - 33.010% 62.136% 4.854% 

 

The subjects' own investment decisions lead to 474 errors in the first nine rounds of the game: 230 in 
condition 1 (control) and 244 in condition 2 (decoy). In the control group, 69.130% of the subjects 
maintain their strategy of making their own predictions after an error. In contrast, 30.870% switch to 
the target algorithm after making their own forecast errors in the following round. In condition 2 
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(decoy), the values are almost identical (Table 7). Here, 69.262% of the subjects continue to give their 
own forecasts, 29.098% rely on the target algorithm and 1.639% on the decoy algorithm (total algo-
rithm = 30.737%). This difference is also clearly not significant in the chi-square test that includes all 
decisions made after observing an error of oneself (p-value = 0.975). When only the response to the 
first (second, ..., n-th error) of a subject itself is considered, the difference between treatments is still 
not significant (first error of a subject: n = 140, p = 0.601; second error of a subject: n = 120, p = 0.266; 
third error of a subject: n = 95, p = 0.596; fourth error of a subject: n = 68, p = 0.195; fifth error of a 
subject: n = 32, p = 0.414; for more than five errors of a subject, the sample size is less than 20). 

 

Table 7: Responses to forecast errors by the subjects themselves 
 

Condition 1 (control) Condition 2 (decoy) 
Selection in 
next round 

Own Fore-
casts 

Algorithm 
A 

Algorithm 
B 

Own Fore-
casts 

Algorithm 
A 

Algorithm 
B 

Total 159 71 - 169 71 4 
Percentage 69.130% 30.870% - 69.262% 29.098% 1.639% 

 

It can thus be stated that the decoy is particularly popular when one of the other two options made 
an error in the previous round. However, the extent of algorithm aversion after prediction errors re-
mains unaffected by the decoy effect both in the case of errors of the algorithm and in the case of 
errors of the subjects themselves. 

 

5. Discussion 

Imagine you are faced with the decision of whether to entrust your private assets to an innovative 
robo-advisor that promises to increase your wealth. How easy is it to develop trust in the new tech-
nology when so much is at stake? The robo-advisor has been explicitly designed to exploit information 
from the market to maximize your wealth and seems superior to all alternatives. But will the robo-
advisor also succeed in your case, or might you not be better off taking the management of your assets 
into your own hands? 

Now imagine you could compare two robo-advisors available on the market and freely choose be-
tween them. It quickly becomes apparent that one of the two robo-advisors seems to be particularly 
powerful compared to the other. How do you make your initial decision now? Will you succeed in 
completely ignoring the second robo-advisor in your decision-making process, or will the added option 
unnecessarily increase the appeal of the superior robo-advisor due to comparison bias? 

The results of this study provide initial evidence that the presence of the second robo-advisor makes 
little difference. The influence of the decoy effect on our decision-making behavior has been demon-
strated for numerous products and services from the analog world. The findings so far suggest that 
adding a decoy should lead to the target gaining greater popularity. Surprisingly, this does not seem to 
hold true for decoys in the context of novel, complex, digital technologies affected by the phenomenon 
of algorithm aversion. It has already been shown that emphasizing the statistical superiority of algo-
rithms alone is not sufficient to address algorithm aversion (e.g., Filiz et al., 2021a). The results of this 
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study support the persistence of algorithm aversion. It is apparently so robust that even the otherwise 
highly reliable decoy effect is unable to mitigate it (Figure 6).  

 

Figure 6: Comparison of decisions in favor of the target product before and after adding a decoy in 
prior studies 

 

Where multiple experiments with different designs were conducted in the studies, the results from the 
research design closest to the original design by Huber, Payne & Puto (1982) and the present study are 
presented here. 

 

In the present study, the decoy effect was made abundantly salient. In the instructions, subjects were 
given a comparison of the target algorithm with the decoy algorithm in tabular form with easily com-
parable numbers (Appendix A). Before starting the experiment, all subjects in the decoy condition had 
to show in the control questions that they understood that two different algorithms were available to 
them (Appendix B). Last but not least, the success probabilities of the target and the decoy were dis-
played again in the selection area of the screen in every single round of the game (Appendix C). The 
fact that the decoy was actually selected in 2.750% of the decisions also fits with the results of previous 
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studies (e.g., Yang & Lynn, 2014; Huber, Payne & Puto, 1982) and suggests that the decoy was noted 
as a decision option. 

However, the presence of the decoy does not lead to an increase in the proportions of the target, as is 
usually the case. Furthermore, the introduction of the decoy is not suitable for reducing algorithm 
aversion. Even if the decisions for both algorithms are added together, there is hardly any difference 
to the control group. This is extremely surprising. On the one hand, the subjects seem to act so ration-
ally that they are hardly influenced by the inferior decoy in their decision between target and compet-
itor. On the other hand, more than half of the decisions are made to perform the prediction task inde-
pendently, even though the performance in doing so falls significantly short of that of an algorithm. 

The main finding of this study is that algorithm aversion prevails over the decoy effect as soon as both 
have an impact on a decision situation. This is true both throughout the course of the game and ex-
plicitly after observing errors of the algorithm. Dietvorst, Simmons & Massey (2015) had uncovered 
that trust in an algorithm declines rapidly after erroneous predictions, leading to the original coining 
of the term "algorithm aversion.” The results of the present study suggest that this finding is not only 
valid in the context of one human vs. one algorithm. When an additional decoy algorithm is available, 
the willingness to use algorithms after errors still declines to the same extent. 

In many application areas for algorithms and AI, we are currently at the point where the first offerings 
are entering the market. For example, autonomous robo-taxis are expected to be offered to the public 
in Germany for the first time in 2022. For providers, this raises the question of how to raise their 
chances of success. Previous theory on the decoy effect had implied that providers should offer a decoy 
in addition to their target product, which they want to establish on the market in the long term, in 
order to influence potential customers in favor of the target. 

However, the results of this study show that the market share of new technologies cannot be increased 
so easily. Rather, potential users harbor a great deal of skepticism toward innovative, automated pro-
cesses, which cannot be remedied by adding a decoy to the offering. The pioneers of digitized and 
automated business ideas should therefore be advised not to pursue the decoy effect as a sales strat-
egy. Instead, they should rather refer to already identified measures to reduce algorithm aversion, 
such as influencing algorithmic output (Dietvorst, Simmons & Massey, 2018) or learning effects (Filiz 
et al., 2021b). 

Finally, some aspects should be mentioned that may limit the validity of this study for decisions in 
practice. In order to follow the established research on the decoy effect, the participants in the eco-
nomic experiment were provided with only two algorithms (target and decoy). In practice we can often 
choose between more than two offers that dominate each other in different ways with respect to 
different dimensions. In particular, the rapid scalability of digital technologies means that the choice 
usually quickly exceeds two algorithms. Second, it should be mentioned that the results were obtained 
in the context of robo-advisors. However, asset management is only one small area affected by algo-
rithm aversion. Possibly, different results would be obtained when using other algorithms from areas 
such as medicine, transportation, or entertainment. Last but not least, this study did not focus on social 
influences. However, humans are social beings. In our everyday lives, in contrast to a laboratory ex-
periment, there is a great deal of interaction with other people, which influences our decision-making 
behavior. It must be left to subsequent research to analyze these aspects in more detail. 
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6. Summary 

In this study, the impact of the decoy effect on algorithm aversion is investigated by means of an eco-
nomic laboratory experiment. Subjects are divided into two groups for an investment game in which 
they try to maximize their compensation. In the control condition, they have the choice in ten rounds 
of the game whether to delegate a prediction task to a specialized algorithm with a success rate of 70% 
(target) or to handle it independently by themselves (competitor). In the treatment condition, they 
also have a second algorithm (decoy) available to them in addition to the first algorithm and their own 
predictions. The second algorithm is identical to the first with one exception: it has a significantly lower 
success rate of just 60%. We speak of the decoy effect if one option (decoy) is inferior to another option 
(target) in at least one dimension and superior in no other dimension. 

The theory of the decoy effect suggests that the first algorithm (target) should be selected significantly 
more often in the treatment condition than in the control condition. Once the decoy comes into play, 
decision makers regularly apply a heuristic. They compare target and decoy and decide in favor of the 
target, since it is clearly superior to the decoy. In this case, the competitor always loses shares in favor 
of the target, since adding the decoy does not provide any additional information about comparative 
effectiveness of the competitor, but only about the target. 

In contrast to these considerations is the algorithm aversion. It describes users' reservations about 
automated procedures (algorithms) that cannot be easily remedied. If users are subject to algorithm 
aversion, they should not be influenced by the presence of a decoy, because algorithms are generally 
not an attractive option for them.  

The first thing that emerges is that the subjects in this study are also affected by algorithm aversion. 
Although each decision in favor of one of the two algorithms increases their compensation by an av-
erage of 19.793 cents, an algorithm is selected in just 43.813% of the decisions. 

Further, the presence of a decoy is shown to have no effect on the extent of algorithm aversion. The 
proportion of decisions in favor of the better performing target algorithm increases by only 0.375 per-
centage points after the decoy is added, from 42.250% to 42.625%. Another 2.750% of the decisions 
are now made in favor of the inferior algorithm (decoy). The proportion of own predictions by the 
subjects themselves decreases slightly from 57.750% to 54.625%. The difference turns out to be not 
significant.  

Finally, the reaction to erroneous forecasts is also examined. In slightly more than 30% of the cases, 
the reaction to forecast errors of the algorithm is to switch to independent forecasting by oneself in 
the following game round. However, this proportion differs only minimally between conditions. Be-
havior after algorithm errors is not affected by the decoy effect. The same is true for the behavior after 
participants’ own erroneous forecasts. The proportion of switches to the algorithm is approximately 
the same in both conditions.  

Whether an additional algorithm (decoy) is present or not does not change the willingness to resort to 
a specialized algorithm in all cases studied. Algorithm aversion cannot be effectively reduced by the 
decoy effect. 
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Appendix A: Instructions 

Instructions for Condition 1 (Control) 

The Game 

In this game, you are asked to make an investment decision in the course of ten game rounds each. You 
will be given an initial budget of Experimental Currency Units (ECUs) of 10 ECUs per round. In each of 
the ten rounds, you can either invest 10 ECUs in Z Shares or save them. You always invest or save the 
full amount; it is not possible to split the budget within a game round. 

If you invest the 10 ECUs in Z Shares, you buy the shares at the beginning of the period and sell the 
shares again at the end of the period. The selling price will be credited to your balance. It may be higher 
or lower than the initial amount of 10 ECUs you invested, depending on whether the price of the Z 
Share increased or decreased during the round.  

For example, if the price of the Z Share increases by 10% within a round, and you have invested 10 ECUs 
in the Z Share, your balance will be credited with 11 ECUs. If the price of the Z Share falls by 10% within 
a round, and you have invested 10 ECUs in the Z Share, your balance will be credited with 9 ECUs. You 
can therefore invest in the Z Share specifically in the rounds in which you expect the price to rise.  

The share price of the Z Share always results from four influencing factors (see Table 1) plus a random 
influence. The values of the influencing factors are announced to you before each game round. 

 

Table 1: Factors influencing the formation of the Z Share price 

Influencing Factor Span Influence Impact on Share Price 

A 5 to 15 Positive High 

B 5 to 25 Positive Medium 

C 0 to 10 Negative Medium 

D 15 to 35 Positive Low 

Random Influence -2 to +2 Positive Medium 
 

Influencing factors A, B, D, and the random influence have a positive effect on the share price. This 
means that if these influencing factors are in the upper range of their span (i.e., above the average of 
the previous periods), the share price tends to rise during the upcoming game round. 

Influencing factor C has a negative effect on the share price. That is, if this influencing factor lies in the 
upper range of its span (i.e., above the average of the previous periods), the share price tends to fall 
during the coming round. The influencing factors have varying degrees of impact on the share price 
(Table 1). 

Alternatively, you can save the round budget in the amount of 10 ECUs. Your balance will then be cred-
ited with 10 ECUs for the round in question. 

Your credit will be built up over the 10 rounds of play and used to calculate your pay at the end of the 
game. Regardless of your decisions in the previous rounds, you can always invest or save exactly 10 
ECUs in each new round. 
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Choice Between Independent Asset Management and an Algorithm 

You can also choose in each game round whether you want to manage your round budget 
independently by yourself or entrust it to a robo-advisor (algorithm). 

If you choose the algorithm, it will either invest or save your round budget of 10 ECUs in the respective 
game round in your place. The algorithm will always decide to invest your ECUs if its model predicts a 
rising share price. If its model predicts a falling share price, it will save your budget in that round. 

In the past, it has been shown that in 7 out of 10 cases (70%) the algorithm makes the decision (invest 
or save) that leads to a higher return. 

 

Remuneration 

The pay structure is the same whether you manage your budget independently or entrust it to the 
algorithm. At the end of the game, your total cumulative balance earned in the ten game rounds is 
considered. 95 of the originally allocated 100 ECUs (10 ECUs each in 10 game rounds) will be deducted 
from your balance. The remaining amount will be exchanged for real money at the ratio of 1 ECU = 1 
EUR and paid to you as your remuneration.  
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Procedure 

After reading the instructions and answering the control questions, the first remunerated game round 
(period 11 of 20) starts on your screen.  

At the beginning of each game round, you will see the price development of the Z Share, the develop-
ment of the influencing factors and the development of the random influence for the last ten game 
rounds (period 1 to 10), in order to get an idea of the development. In addition, you will always be 
informed of the current values of the four influencing factors for the respective game round. The value 
of the random influence, on the other hand, is unknown in advance. Afterwards, you make your deci-
sion for the respective game round whether you want to manage your round budget independently or 
entrust it to the robo-advisor (algorithm). 

If you decide to do the investment task on your own, next you will choose whether you want to invest 
10 ECUs in Z Shares or save them in the particular round. If you decide to use the algorithm, it will make 
the decision between investing and saving in your place. 

After submitting the decision, you will be informed about the development of the Z Share price in any 
case, regardless of whether your budget was invested or saved. So, you will receive the full information 
in any case. The achieved return from the investment in Z Shares or the saved amount will be credited 
to your balance. 

A total of ten rounds will be played. After the experiment is completed, you will receive your remuner-
ation, which is calculated according to the scheme described under "Remuneration." 

 

Remarks 

• Please keep quiet during the experiment! 
• Do not look at your neighbor's screen! 
• Apart from a pen and a pocket calculator, no other aids (smartphones, smartwatches, etc.) are 

permitted. 
• Only use the white sheet of paper provided for your notes. 
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Instructions for Condition 2 (Decoy) 

The Game 

In this game, you are asked to make an investment decision in the course of ten game rounds each. You 
will be given an initial budget of Experimental Currency Units (ECUs) of 10 ECUs per round. In each of 
the ten rounds, you can either invest 10 ECUs in Z Shares or save them. You always invest or save the 
full amount; it is not possible to split the budget within a game round. 

If you invest the 10 ECUs in Z Shares, you buy the shares at the beginning of the period and sell the 
shares again at the end of the period. The selling price will be credited to your balance. It may be higher 
or lower than the initial amount of 10 ECUs you invested, depending on whether the price of the Z 
Share increased or decreased during the round.  

For example, if the price of the Z Share increases by 10% within a round, and you have invested 10 ECUs 
in the Z Share, your balance will be credited with 11 ECUs. If the price of the Z Share falls by 10% within 
a round, and you have invested 10 ECUs in the Z Share, your balance will be credited with 9 ECUs. You 
can therefore invest in the Z Share specifically in the rounds in which you expect the price to rise.  

The share price of the Z Share always results from four influencing factors (see Table 1) plus a random 
influence. The values of the influencing factors are announced to you before each game round. 

 

Table 1: Factors influencing the formation of the Z Share price 

Influencing Factor Span Influence Impact on Share Price 

A 5 to 15 Positive High 

B 5 to 25 Positive Medium 

C 0 to 10 Negative Medium 

D 15 to 35 Positive Low 

Random Influence -2 to +2 Positive Medium 
 

Influencing factors A, B, D, and the random influence have a positive effect on the share price. This 
means that if these influencing factors are in the upper range of their span (i.e., above the average of 
the previous periods), the share price tends to rise during the upcoming game round. 

Influencing factor C has a negative effect on the share price. That is, if this influencing factor lies in the 
upper range of its span (i.e., above the average of the previous periods), the share price tends to fall 
during the coming round. The influencing factors have varying degrees of impact on the share price 
(Table 1). 

Alternatively, you can save the round budget in the amount of 10 ECUs. Your balance will then be cred-
ited with 10 ECUs for the round in question. 

Your credit will be built up over the 10 rounds of play and used to calculate your pay at the end of the 
game. Regardless of your decisions in the previous rounds, you can always invest or save exactly 10 
ECUs in each new round. 
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Choice Between Independent Asset Management and an Algorithm 

You can also choose in each game round whether you want to manage your round budget 
independently by yourself or entrust it to one of two robo-advisors (algorithms). 

If you choose one of the algorithms, it will either invest or save your round budget of 10 ECUs in the 
respective game round in your place. The algorithms will always decide to invest your ECUs if their 
models predict a rising share price. If their models predict a falling share price, they will save your 
budget in that round. 

In the past, it has been shown that in 7 out of 10 cases (70%) Algorithm A makes the decision (invest 
or save) that leads to a higher return. Furthermore, it has been shown that Algorithm B makes the 
advantageous decision in 6 out of 10 cases (60%). 

 

Table 2: Properties of the algorithms 

Property Algorithm A Algorithm B 

Year of completion 2022 2022 
Manufacturer Ostfalia Analytics Ostfalia Analytics 

Probability of success 70% 60% 
 

 

Remuneration 

The pay structure is the same whether you manage your budget independently or entrust it to one of 
the algorithms. At the end of the game, your total cumulative balance earned in the ten game rounds 
is considered. 95 of the originally allocated 100 ECUs (10 ECUs each in 10 game rounds) will be 
deducted from your balance. The remaining amount will be exchanged for real money at the ratio of 1 
ECU = 1 EUR and paid to you as your remuneration. 
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Procedure 

After reading the instructions and answering the control questions, the first remunerated game round 
(period 11 of 20) starts on your screen.  

At the beginning of each game round, you will see the price development of the Z Share, the develop-
ment of the influencing factors and the development of the random influence for the last ten game 
rounds (period 1 to 10), in order to get an idea of the development. In addition, you will always be 
informed of the current values of the four influencing factors for the respective game round. The value 
of the random influence, on the other hand, is unknown in advance. Afterwards, you make your deci-
sion for the respective game round whether you want to manage your round budget independently or 
entrust it to Algorithm A or entrust it to Algorithm B. 

If you decide to do the investment task on your own, next you will choose whether you want to invest 
10 ECUs in Z Shares or save them in the particular round.  

If you decide to use an algorithm, it will make the decision between investing and saving in your place. 

After submitting the decision, you will be informed about the development of the Z Share price in any 
case, regardless of whether your budget was invested or saved. So, you will receive the full information 
in any case. The achieved return from the investment in Z Shares or the saved amount will be credited 
to your balance. 

A total of ten rounds will be played. After the experiment is completed, you will receive your remuner-
ation, which is calculated according to the scheme described under "Remuneration.” 

 

Remarks 

• Please keep quiet during the experiment! 
• Do not look at your neighbor's screen! 
• Apart from a pen and a pocket calculator, no other aids (smartphones, smartwatches, etc.) are 

permitted. 
• Only use the white sheet of paper provided for your notes. 
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Appendix B: Test Questions 

 

Question 1: How many rounds of play does this economic experiment involve? 

a) 5. 
b) 10. (Correct!) 
c) 15.  

 
Question 2 (condition 1): What alternatives do you have in each round? 

a) I must perform the investment task independently.  
b) I can perform the investment task independently or delegate it to a financial expert. 
c) I can perform the investment task independently or delegate it to a robo-advisor (algorithm). 

(Correct!) 
 

Question 2 (condition 2): What alternatives do you have in each round? 

a) I must perform the investment task independently.  
b) I can perform the investment task independently or delegate it to a financial expert. 
c) I can perform the investment task independently or delegate it to one of two robo-advisors 

(algorithms). (Correct!) 
 

Question 3: Which influencing factors have a positive effect on the price of the Z Share? 

a) Influencing factors A, B, and C. 
b) Influencing factors A, B, and D. (Correct!) 
c) Influencing factors A, C, and D. 

 
Question 4: How is your remuneration calculated? 

a) At the end of the game, 100 ECUs will be deducted from my balance. The remaining amount 
will be exchanged for real money at the ratio of 1 ECU = 0.10 EUR. 

b) At the end of the game, 100 ECUs will be deducted from my balance. The remaining amount 
will be exchanged for real money at the ratio of 1 ECU = 1 EUR. 

c) At the end of the game, 95 ECUs will be deducted from my balance. The remaining amount 
will be exchanged for real money at the ratio of 1 ECU = 1 EUR. (Correct!) 
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Appendix C: Screen Design 

Figure A-1: Screen design in condition 1 (control) 
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Figure A-2: Screen design in condition 2 (decoy) 

 


